题目内容

2.在平面直角坐标系xoy中,己知定点F(l,0),点P在y轴上运动,点M在x轴上,点N 为平面内的动点,且满足可$\overline{PM}•\overline{PF}=0,\overline{PM}+\overline{PN}=0$.求动点N的轨迹C的方程.

分析 设点N(x,y),M(a,0),P(0,b),由已知条件推导出点M(-x,0),P(0,$\frac{y}{2}$).由此能求出动点N的轨迹C的方程.

解答 解:设点N(x,y),M(a,0),P(0,b).
∵$\overrightarrow{PM}$+$\overrightarrow{PN}$=$\overrightarrow{0}$可知,∴点P是MN的中点,
∴a=-x,b=$\frac{y}{2}$,
∴点M(-x,0),P(0,$\frac{y}{2}$).
∴$\overrightarrow{PM}$=(-x,-$\frac{y}{2}$),$\overrightarrow{PF}$=(1,-$\frac{y}{2}$),
∵$\overrightarrow{PM}•\overrightarrow{PF}=\overrightarrow{0}$,∴-x+$\frac{{y}^{2}}{4}$=0,即y2=4x.
∴动点N的轨迹C的方程为y2=4x

点评 本题考查点的轨迹方程的求法,考查向量知识的运用,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网