题目内容
19.设集合A={y|y=-x2+2x+3,x∈R},B={y|y=5x2-10x+3,x∈R},则A∩B=( )| A. | [-2,4] | B. | (-2,4] | C. | [-2,4) | D. | (-2,4) |
分析 利用配方法分别求出集合A和B,由此能求出A∩B.
解答 解:∵A={y|y=-x2+2x+3,x∈R}={y|y=-(x-1)2+4}={y|y≤-4}=(-∞,4],
B={y|y=5x2-10x+3,x∈R}={y|=5(x-1)2-2}={y|y≥-2}=[-2,+∞),
∴A∩B=[-2,4],
故选:A.
点评 本题考查交集的求法,是基础题,解题时要认真审题,注意交集性质的合理运用.
练习册系列答案
相关题目
15.下列函数中,偶函数是( )
| A. | y=2x-$\frac{1}{{2}^{x}}$ | B. | y=xsinx | C. | y=excosx | D. | y=x2+sinx |
10.心理学家发现视觉和空间能力与性别有关,某数学兴趣小组为了验证这个结论,从兴趣小组中按分层抽样的方法抽取50名同学(男30名女20名),给所有同学几何题和代数题各一题,让各位同学自由选择一道题进行解答,选题情况如表:(单位:人)
(1)能否据此判断有97.5%的把握认为视觉和空间能力与性别有关?
(2)经过多次测试后,女生甲每次解答一道几何题所用的时间在5-7分钟,女生乙每次解答一道几何题所用的时间在6-8分钟,现甲、乙各解同一道几何题,求乙比甲先解答完的概率.
(3)现从选择做几何题的8名女生中任意抽取两人对她们的答题情况进行全程研究,记甲、乙两名女生被抽到的人数为X,求X的分布列及数学期望E(X).
附表及公式
${k^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$.
| 几何题 | 代数题 | 总计 | |
| 男同学 | 22 | 8 | 30 |
| 女同学 | 8 | 12 | 20 |
| 总计 | 30 | 20 | 50 |
(2)经过多次测试后,女生甲每次解答一道几何题所用的时间在5-7分钟,女生乙每次解答一道几何题所用的时间在6-8分钟,现甲、乙各解同一道几何题,求乙比甲先解答完的概率.
(3)现从选择做几何题的8名女生中任意抽取两人对她们的答题情况进行全程研究,记甲、乙两名女生被抽到的人数为X,求X的分布列及数学期望E(X).
附表及公式
| P(k2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
7.已知全集U={1,2,3,4,5},且A={2,3,4},B={1,2},那么A∩(∁UB)等于( )
| A. | {2} | B. | {5} | C. | {3,4} | D. | {22,3,4,5} |
14.设$x={({{{log}_{\frac{1}{2}}}\frac{1}{3}})^{-2}}+{({{{log}_{\frac{1}{3}}}\frac{1}{3}})^{-1}}$,则x属于区间( )
| A. | (-2,-1) | B. | (1,2) | C. | (-3,-2) | D. | (2,3) |
11.变量x,y满足约束条件$\left\{\begin{array}{l}x≥0\\ x-2y≤0\\ x+y≥3\end{array}\right.$,则x2+y2的取值范围是( )
| A. | [0,9] | B. | [5,+∞) | C. | $[\frac{{3\sqrt{2}}}{2},+∞)$ | D. | $[\frac{9}{2},+∞)$ |
8.设函数f(x)在x0处可导,则$\underset{lim}{△x→0}$$\frac{f({x}_{0}-△x)-f({x}_{0})}{△x}$=( )
| A. | f′(x0) | B. | -f′(x0) | C. | f(x0) | D. | -f(x0) |