题目内容

(文)设数列{an}的前n项和Sn=
n
n+1
,n=1,2,3…(1)求数列{an}的通项公式an.(2)求数列{
1
an
}的前n项和Tn
(文) (1)∵数列{ an}的前n项和Sn=
n
n+1
 知a1=S1=
1
2
又由an=Sn-Sn-1(n≥2)
可知:an=
n
n+1
-
n-1
n
=
n2-(n2-1)
n(n+1)
=
1
n(n+1)
 (n≥2)又a1=
1
2
满足an=
1
n(n+1)
 (n≥2)
故数列{ an}的通项公式an=
1
n(n+1)
 (n∈N*)
(2)∵an=
1
n(n+1)
,则
1
an
=n(n+1)=n2+n 于是{
1
an
}的前n项之和Tn=
1
a1
+
1
a2
+…+
1
an

=(1+2+3+…+n)+(12+22+32+…+n2
=
n(n+1)
2
+
n(n+1)(2n+1)
6
=
n(n+1)(n+2)
3

数列{
1
an
}的前n项和Tn
n(n+1)(n+2)
3
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网