题目内容
(文)设数列{an}的前n项和Sn=
,n=1,2,3…(1)求数列{an}的通项公式an.(2)求数列{
}的前n项和Tn.
| n |
| n+1 |
| 1 |
| an |
(文) (1)∵数列{ an}的前n项和Sn=
知a1=S1=
又由an=Sn-Sn-1(n≥2)
可知:an=
-
=
=
(n≥2)又a1=
满足an=
(n≥2)
故数列{ an}的通项公式an=
(n∈N*)
(2)∵an=
,则
=n(n+1)=n2+n 于是{
}的前n项之和Tn=
+
+…+
=(1+2+3+…+n)+(12+22+32+…+n2)
=
+
=
.
数列{
}的前n项和Tn:
.
| n |
| n+1 |
| 1 |
| 2 |
可知:an=
| n |
| n+1 |
| n-1 |
| n |
| n2-(n2-1) |
| n(n+1) |
| 1 |
| n(n+1) |
| 1 |
| 2 |
| 1 |
| n(n+1) |
故数列{ an}的通项公式an=
| 1 |
| n(n+1) |
(2)∵an=
| 1 |
| n(n+1) |
| 1 |
| an |
| 1 |
| an |
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an |
=(1+2+3+…+n)+(12+22+32+…+n2)
=
| n(n+1) |
| 2 |
| n(n+1)(2n+1) |
| 6 |
| n(n+1)(n+2) |
| 3 |
数列{
| 1 |
| an |
| n(n+1)(n+2) |
| 3 |
练习册系列答案
相关题目