题目内容
6.为了解某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了如下列表:| 喜爱打篮球 | 不喜爱打篮球 | 合计 | |
| 男生 | 5 | ||
| 女生 | 10 | ||
| 合计 | 50 |
(1)请将上表补充完整(不用写计算过程);
(2)请问有多大的把握认为喜爱打篮球与性别有关?说明你的理由.
下面的临界值表供参考:
| P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
分析 (1)根据在全部50人中随机抽取1人抽到喜爱打篮球的学生的概率为$\frac{3}{5}$,可得喜爱打篮球的学生,即可得到列联表;
(2)利用公式求得K2,与临界值比较,即可得到结论.
解答 解:(1)根据在全部50人中随机抽取1人抽到喜爱打篮球的学生的概率为$\frac{3}{5}$,可得喜爱打篮球的学生为30人,故可得列联表补充如下:
| 喜爱打篮球 | 不喜爱打篮球 | 合计 | |
| 男生 | 20 | 5 | 25 |
| 女生 | 10 | 15 | 25 |
| 合计 | 30 | 20 | 50 |
∴有99.5%的把握认为喜爱打篮球与性别有关.
点评 本题考查独立性检验知识,考查学生的计算能力,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关题目