题目内容

10.在平面直角坐标系xOy中,设A、B、C是圆x2+y2=1上相异三点.若存在正实数λ,μ,使得$\overrightarrow{OC}$=λ$\overrightarrow{OA}$+μ$\overrightarrow{OB}$,则(λ-2)22的取值范围是(  )
A.($\frac{1}{2}$,+∞)B.(-∞,2)C.(2,+∞)D.(-∞,$\frac{1}{2}$)

分析 由条件可以得到$-1<\overrightarrow{OA}•\overrightarrow{OC}<1$,而根据$\overrightarrow{OC}=λ\overrightarrow{OA}+μ\overrightarrow{OB}$便可得到${μ}^{2}=1+{λ}^{2}-2λ\overrightarrow{OA}•\overrightarrow{OC}$,这样带入$(λ-2)^{2}+{μ}^{2}=(λ-2)^{2}+1+{λ}^{2}-2λ\overrightarrow{OA}•\overrightarrow{OC}$,根据$-1<\overrightarrow{OA}•\overrightarrow{OC}<1$便可得到2λ2-6λ+5<(λ-2)22<2λ2-2λ+5,根据二次函数的值域便可得出(λ-2)22的取值范围.

解答 解:根据题意,$-1<\overrightarrow{OA}•\overrightarrow{OC}<1$;
由$\overrightarrow{OC}=λ\overrightarrow{OA}+μ\overrightarrow{OB}$得,$μ\overrightarrow{OB}=\overrightarrow{OC}-λ\overrightarrow{OA}$;
∴${μ}^{2}=1+{λ}^{2}-2λ\overrightarrow{OA}•\overrightarrow{OC}$;
∴(λ-2)22=(λ-2)2+1+λ2$-2λ\overrightarrow{OA}•\overrightarrow{OC}$;
∵λ>0;
∴(λ-2)2+1+λ2-2λ<$(λ-2)^{2}+1+{λ}^{2}-2λ\overrightarrow{OA}•\overrightarrow{OC}$<(λ-2)2+1+λ2+2λ;
(λ-2)2+1+λ2-2λ=2λ2-6λ+5$>\frac{1}{2}$;
(λ-2)2+1+λ2+2λ=2λ2-2λ+5无最大值;
∴(λ-2)22的取值范围为$(\frac{1}{2},+∞)$.
故选A.

点评 考查向量数乘的几何意义,向量数量积的计算公式,以及不等式的性质,二次函数的值域.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网