题目内容

如图1,矩形ABCD中,AB=2AD=2a,E为DC的中点,现将△ADE沿AE折起,使平面ADE⊥平面ABCE,如图2。求证:AD⊥平面BDE。
 
解:在题图1中,连接BE,则

AB=2a,
∴AB2=AE2+EB2
∴AE⊥EB
知DO⊥平面ABCE,
∴DO⊥BE,
又∵DO∩AE=O,
∴BE⊥平面ADE,
∴BE⊥AD,
又∵AD⊥DE,BE∩DE=E,
∴AD⊥平面BDE。
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网