题目内容

4.已知函数$f(x)=\left\{{\begin{array}{l}{{{log}_2}(1-x),}&{x≤0}\\{f(x-1)-f(x-2),}&{x>0}\end{array}}\right.$,则f(3)=(  )
A.-3B.-1C.0D.1

分析 f(3)=f(2)-f(1)=[f(1)-f(0)]-f(0)=-f(0),由此能求出结果.

解答 解:∵函数$f(x)=\left\{{\begin{array}{l}{{{log}_2}(1-x),}&{x≤0}\\{f(x-1)-f(x-2),}&{x>0}\end{array}}\right.$,
∴f(3)=f(2)-f(1)=[f(1)-f(0)]-f(1)=-f(0)=-log21=0.
故选:C.

点评 本题考查函数值的求法及应用,是基础题,解题时要认真审题,注意函数性质的合理运用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网