题目内容
的两段,则此椭圆的离心率为________.
解析 由题意,得=3⇒+c=3c-b
⇒b=c,
因此e===.
A、B为△ABC的内角,A>B是sin A>sin B的________条件.
命题“ax2-2ax+3>0恒成立”是假命题,则实数a的取值范围是______________.
已知椭圆的离心率为,焦点是(-3,0),(3,0),则椭圆方程为______________.
已知抛物线y2=2px (p>0)与双曲线-=1 (a>0,b>0)有相同的焦点F,点A是两曲线的交点,且AF⊥x轴,则双曲线的离心率为________.
已知点P(3,4)是椭圆+=1 (a>b>0)上的一点,F1、F2为椭圆的两焦点,若PF1⊥PF2,试求:
(1)椭圆的方程;
(2)△PF1F2的面积.
设F1、F2是双曲线-y2=1的两个焦点,点P在双曲线上,∠F1PF2=90°,则△F1PF2的面积是________.
如图所示,O为坐标原点,过点P(2,0)且斜率为k的直线l交抛物线y2=2x于M(x1,y1),N(x2,y2)两点.
(1)求x1x2与y1y2的值;
(2)求证:OM⊥ON.
已知函数f(x)=x3+ax2+bx(a,b∈R)的图象如图所示,它与直线y=0在原点处相切,此切线与函数图象所围区域(图中阴影部分)的面积为,则a的值为________.