ÌâÄ¿ÄÚÈÝ
14£®Éèa£¬b¡ÊR£¬¶¨ÒåÔËËã¡°¡Å¡±ºÍ¡°¡Ä¡±ÈçÏ£º$a¡Åb=\left\{\begin{array}{l}b£¬a¡Üb\\ a£¬a£¾b\end{array}\right.$£¬$a¡Äb=\left\{\begin{array}{l}a£¬a¡Üb\\ b£¬a£¾b\end{array}\right.$£¬ÈôÕýÊýa£¬b£¬c£¬dÂú×ãab¡Ü4£¬c+d¡Ý4£¬Ôò£¨¡¡¡¡£©| A£® | a¡Äb¡Ý2£¬c¡Äd¡Ý2 | B£® | a¡Äb¡Ü2£¬c¡Åd¡Ý2 | C£® | a¡Åb¡Ý2£¬c¡Äd¡Ü2 | D£® | a¡Åb¡Ü2£¬c¡Åd¡Ü2 |
·ÖÎö ÒÀÌâÒ⣬¶Ôa£¬b¸³Öµ£¬¶ÔËĸöÑ¡ÏîÖð¸öÅųý¼´¿É£®
½â´ð ½â£º¡ß¶¨ÒåÔËËã¡°¡Å¡±ºÍ¡°¡Ä¡±ÈçÏ£º$a¡Åb=\left\{\begin{array}{l}b£¬a¡Üb\\ a£¬a£¾b\end{array}\right.$£¬$a¡Äb=\left\{\begin{array}{l}a£¬a¡Üb\\ b£¬a£¾b\end{array}\right.$£¬
ÕýÊýa£¬b£¬c£¬dÂú×ãab¡Ü4£¬c+d¡Ý4
¡à²»·ÁÁîa=1£¬b=4£¬Ôòa¡Äb=1£¬a¡Åb=4£¬¹Ê¿ÉÅųýA£¬D£»
ÔÙÁîc=1£¬d=4£¬Âú×ãÌõ¼þc+d¡Ý4£¬Ôòc¡Äd=1£¬c¡Åd=4£¬¹Ê¿ÉÅųýC£»
¹ÊÑ¡B£®
µãÆÀ ±¾Ì⿼²éº¯ÊýµÄÇóÖµ£¬¿¼²éÕýÈ·Àí½âÌâÒâÓëÁé»îÓ¦ÓõÄÄÜÁ¦£¬×ÅÖØ¿¼²éÅųý·¨µÄÓ¦Óã¬ÊôÓÚÖеµÌâ
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
5£®¼ÙÉè¹ØÓÚijÉ豸µÄʹÓÃÄêÏÞx£¨Ä꣩ºÍËùÖ§³öµÄάÐÞ·ÑÓÃy£¨ÍòÔª£©ÓÐÈç±íµÄͳ¼Æ×ÊÁÏ£º
ÈôÓÉ×ÊÁÏ¿ÉÖªy¶Ôx³ÊÏßÐÔÏà¹Ø¹ØÏµ£¬ÊÔÇó£º
£¨1£©ÏßÐԻعéÖ±Ïß·½³Ì£»
£¨2£©¸ù¾Ý»Ø¹éÖ±Ïß·½³Ì£¬¹À¼ÆÊ¹ÓÃÄêÏÞΪ20Äêʱ£¬Î¬ÐÞ·ÑÓÃÊǶàÉÙ£¿
»Ø¹éÖ±Ïß·½³Ì$\stackrel{¡Ä}{y}$=$\stackrel{¡Ä}{b}$x+$\stackrel{¡Ä}{a}$µÄϵÊýΪ£º$\left\{\begin{array}{l}{\stackrel{¡Ä}{b}=\frac{\sum_{i=1}^{n}£¨{x}_{i}-\overline{x}£©£¨{y}_{i}-\overline{y}£©}{\sum_{i=1}^{n}£¨{x}_{i}-\overline{x}£©^{2}}=\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}}\\{\stackrel{¡Ä}{b}=\overline{y}-\stackrel{¡Ä}{b}\overline{x}}\end{array}\right.$£®
| ʹÓÃÄêÏÞx£¨Ä꣩ | 2 | 3 | 4 | 5 | 6 |
| άÐÞ·ÑÓÃy£¨ÍòÔª£© | 2.2 | 3.8 | 5.5 | 6.5 | 7.0 |
£¨1£©ÏßÐԻعéÖ±Ïß·½³Ì£»
£¨2£©¸ù¾Ý»Ø¹éÖ±Ïß·½³Ì£¬¹À¼ÆÊ¹ÓÃÄêÏÞΪ20Äêʱ£¬Î¬ÐÞ·ÑÓÃÊǶàÉÙ£¿
»Ø¹éÖ±Ïß·½³Ì$\stackrel{¡Ä}{y}$=$\stackrel{¡Ä}{b}$x+$\stackrel{¡Ä}{a}$µÄϵÊýΪ£º$\left\{\begin{array}{l}{\stackrel{¡Ä}{b}=\frac{\sum_{i=1}^{n}£¨{x}_{i}-\overline{x}£©£¨{y}_{i}-\overline{y}£©}{\sum_{i=1}^{n}£¨{x}_{i}-\overline{x}£©^{2}}=\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}}\\{\stackrel{¡Ä}{b}=\overline{y}-\stackrel{¡Ä}{b}\overline{x}}\end{array}\right.$£®
19£®ÒÑÖªf£¨x£©=xn£¬Èôf¡ä£¨-1£©=3£¬ÔònµÄֵΪ£¨¡¡¡¡£©
| A£® | 3 | B£® | -4 | C£® | 5 | D£® | -5 |
4£®Ä³¸Û¿ÚÓÐÒ»¸ö²´Î»£¬ÏÖͳ¼ÆÁËijÔÂ100ËÒÂÖ´¬Ôڸò´Î»Í£¿¿µÄʱ¼ä£¨µ¥Î»£ºÐ¡Ê±£©£¬Èç¹ûÍ£¿¿Ê±¼ä²»×ã°ëСʱ°´°ëСʱ¼ÆÊ±£¬³¬¹ý°ëСʱ²»×ã1Сʱ°´1Сʱ¼ÆÊ±£¬ÒÀ´ËÀàÍÆ£¬Í³¼Æ½á¹ûÈç±í£º
£¨¢ñ£©Éè¸ÃÔÂ100ËÒÂÖ´¬Ôڸò´Î»µÄƽ¾ùÍ£¿¿Ê±¼äΪaСʱ£¬ÇóaµÄÖµ£»
£¨¢ò£©¼Ù¶¨Ä³ÌìÖ»Óмס¢ÒÒÁ½ËÒÂÖ´¬ÐèÒªÔڸò´Î»Í£¿¿aСʱ£¬ÇÒÔÚÒ»ÖçÒ¹µÄʱ¼ä¶ÎÖÐËæ»úµ½´ï£¬ÇóÕâÁ½ËÒÂÖ´¬ÖÐÖÁÉÙÓÐÒ»ËÒÔÚÍ£¿¿¸Ã²´Î»Ê±±ØÐëµÈ´ýµÄ¸ÅÂÊ£®
| Í£¿¿Ê±¼ä | 2.5 | 3 | 3.5 | 4 | 4.5 | 5 | 5.5 | 6 |
| ÂÖ´¬ÊýÁ¿ | 12 | 12 | 17 | 20 | 15 | 13 | 8 | 3 |
£¨¢ò£©¼Ù¶¨Ä³ÌìÖ»Óмס¢ÒÒÁ½ËÒÂÖ´¬ÐèÒªÔڸò´Î»Í£¿¿aСʱ£¬ÇÒÔÚÒ»ÖçÒ¹µÄʱ¼ä¶ÎÖÐËæ»úµ½´ï£¬ÇóÕâÁ½ËÒÂÖ´¬ÖÐÖÁÉÙÓÐÒ»ËÒÔÚÍ£¿¿¸Ã²´Î»Ê±±ØÐëµÈ´ýµÄ¸ÅÂÊ£®