题目内容
【题目】我校为丰富师生课余活动,计划在一块直角三角形
的空地上修建一个占地面积为
(平方米)的
矩形健身场地,如图,点
在
上,点
在
上,且
点在斜边
上,已知
,
米,
米,
.设矩形
健身场地每平方米的造价为
元,再把矩形
以外(阴影部分)铺上草坪,每平方米的造价为
元(
为正常数)
![]()
(1)试用
表示
,并求
的取值范围;
(2)求总造价
关于面积
的函数
;
(3)如何选取
,使总造价
最低(不要求求出最低造价)
【答案】(1)
(2) 选取
的长为12米或18米时总造价
最低
【解析】试题分析:(1)在
中,显然
,
,根据面积公式写出矩形面积;(2)矩形
健身场地造价
,又
的面积为
,即草坪造价
,写出总造价即可;(3)根据均值不等式
即可求出造价的最小值.
试题解析:
(1)在
中,显然
,
,
矩形
的面积![]()
于是
为所求
(2)矩形
健身场地造价![]()
又
的面积为
,即草坪造价
,
由总造价![]()
(3) ![]()
当且仅当
即
时等号成立,此时,
解得
或![]()
答:选取
的长为12米或18米时总造价
最低.
练习册系列答案
相关题目
【题目】某地
户家庭的年收入
(万元)和年饮食支出
(万元)的统计资料如下表:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(1)求
关于
的线性回归方程;(结果保留到小数点后
为数字)
(2)利用(1)中的回归方程,分析这
户家庭的年饮食支出的变化情况,并预测该地年收入
万元的家庭的年饮食支出.(结果保留到小数点后
位数字)
附:回归直线的斜率和截距的最小二乘法估计公式分别为:
, ![]()