ÌâÄ¿ÄÚÈÝ
1£®¼¯ºÏ{1£¬2£¬3£¬¡£¬n}£¨n¡Ý3£©ÖУ¬Ã¿Á½¸öÏàÒìÊý×÷³Ë»ý£¬½«ËùÓÐÕâЩ³Ë»ýµÄºÍ¼ÇΪTn£¬È磺${T_3}=1¡Á2+1¡Á3+2¡Á3=\frac{1}{2}[{6^2}-£¨{1^2}+{2^2}+{3^2}£©]=11$£»${T_4}=1¡Á2+1¡Á3+1¡Á4+2¡Á3+2¡Á4+3¡Á4=\frac{1}{2}[{10^2}-£¨{1^2}+{2^2}+{3^2}+{4^2}£©]=35$£»${T_5}=1¡Á2+1¡Á3+1¡Á4+1¡Á5+¡+3¡Á5+4¡Á5=\frac{1}{2}[{15^2}-£¨{1^2}+{2^2}+{3^2}+{4^2}+{5^2}£©]=85$ÔòT8=546£®£¨Ð´³ö¼ÆËã½á¹û£©
·ÖÎö ¸ù¾ÝT3¡¢T4¡¢T5¹éÄɳöʽ×ÓÓëϱêÖ®¼ä¹æÂÉ£¬ÀûÓô˹æÂÉ¿ÉÇóT8µÄÖµ£®
½â´ð ½â£ºÓÉÓÉÌâÒâµÃ£¬T3=1¡Á2+1¡Á3+2¡Á3=$\frac{1}{2}$[62-£¨12+22+32£©]=11£»
T4=1¡Á2+1¡Á3+1¡Á4+2¡Á3+2¡Á4+3¡Á4=$\frac{1}{2}$[102-£¨12+22+32+42£©]=35£»
T5=1¡Á2+1¡Á3+1¡Á4+1¡Á5+¡4¡Á5=$\frac{1}{2}$[152-£¨12+22+32+42+52£©]=85£®
¹éÄɵóö£º${T_n}=\frac{1}{2}[{£¨1+2+¡+n£©^2}-£¨{1^2}+{2^2}+¡+{n^2}£©]$£¬
¹ÊT8=$\frac{1}{2}[{£¨1+2+¡+8£©}^{2}-£¨{1}^{2}+{2}^{2}+¡+{8}^{2}£©]$=$\frac{1}{2}$[$£¨\frac{8¡Á9}{2}£©^{2}$-$\frac{8¡Á9¡Á17}{6}$]=546£®
¹Ê´ð°¸Îª£º546£®
µãÆÀ ±¾Ì⿼²éÁËÊýÁÐÇóºÍ£¬¹éÄÉÍÆÀí£¬ÄѵãÔÚÓÚ·¢ÏÖÆäÖеĹæÂÉ£¬¿¼²é¹Û²ì¡¢·ÖÎö¡¢¹éÄÉÄÜÁ¦
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
11£®º¯Êýy=x2-2x+1ÔÚ±ÕÇø¼ä[0£¬3]ÉϵÄ×î´óÖµºÍ×îСֵ֮ºÍΪ£¨¡¡¡¡£©
| A£® | 2 | B£® | 3 | C£® | 4 | D£® | 5 |
9£®ÒÑÖªº¯Êýf£¨x£©Âú×ãf£¨x£©=f£¨¦Ð-x£©£¬ÇÒµ±x¡Ê£¨-$\frac{¦Ð}{2}$£¬$\frac{¦Ð}{2}$£©Ê±£¬f£¨x£©=ex+sinx£¬Ôò£¨¡¡¡¡£©
| A£® | $f£¨\frac{¦Ð}{3}£©£¼f£¨\frac{¦Ð}{4}£©£¼f£¨\frac{5¦Ð}{6}£©$ | B£® | $f£¨\frac{¦Ð}{4}£©£¼f£¨\frac{¦Ð}{3}£©£¼f£¨\frac{5¦Ð}{6}£©$ | C£® | $f£¨\frac{¦Ð}{4}£©£¼f£¨\frac{5¦Ð}{6}£©£¼f£¨\frac{¦Ð}{3}£©$ | D£® | $f£¨\frac{5¦Ð}{6}£©£¼f£¨\frac{¦Ð}{4}£©£¼f£¨\frac{¦Ð}{3}£©$ |
16£®º¯Êýy=$\sqrt{2}sin£¨{x-{{45}¡ã}}£©-sinx$£¨¡¡¡¡£©
| A£® | ÊÇÆæº¯Êýµ«²»ÊÇżº¯Êý | B£® | ÊÇżº¯Êýµ«²»ÊÇÆæº¯Êý | ||
| C£® | ¼ÈÊÇÆæº¯ÊýÓÖÊÇżº¯Êý | D£® | ¼È²»ÊÇÆæº¯ÊýÓÖ²»ÊÇżº¯Êý |
13£®Éèf£¨x£©ÊǶ¨ÒåÔÚRÉÏµÄÆæº¯Êý£¬f£¨2£©=0£¬µ±x£¾0ʱ£¬ÓÐxf¡ä£¨x£©-f£¨x£©£¼0ºã³ÉÁ¢£¬Ôòxf£¨x£©£¾0µÄ½â¼¯Îª£¨¡¡¡¡£©
| A£® | £¨-2£¬0£©¡È£¨2£¬+¡Þ£© | B£® | £¨-2£¬0£©¡È£¨0£¬2£© | C£® | £¨-¡Þ£¬-2£©¡È£¨2£¬+¡Þ£© | D£® | £¨-¡Þ£¬-2£©¡È£¨0£¬2£© |