题目内容

18.若不等式ln$\frac{1+{2}^{x}+(1-2a){4}^{x}}{4}$≥xln4对任意x∈(-∞,2]恒成立,则实数a的取值范围是(  )
A.[1,+∞)B.(-∞,2]C.(-∞,-$\frac{43}{32}$]D.[-$\frac{43}{32}$,+∞)

分析 由题意可得1-2a≥$\frac{{4}^{x+1}-{2}^{x}-1}{{4}^{x}}$在x≤2恒成立,由y=$\frac{{4}^{x+1}-{2}^{x}-1}{{4}^{x}}$=4-$\frac{1}{{2}^{x}}$-$\frac{1}{{4}^{x}}$=$\frac{17}{4}$-($\frac{1}{2}$+$\frac{1}{{2}^{x}}$)2,x≤2,由t=$\frac{1}{{2}^{x}}$(t≥$\frac{1}{4}$),可得y=$\frac{17}{4}$-($\frac{1}{2}$+t)2递减,运用二次函数的最值的求法,可得最大值,解a的不等式可得所求范围.

解答 解:不等式ln$\frac{1+{2}^{x}+(1-2a){4}^{x}}{4}$≥xln4对任意x∈(-∞,2]恒成立,
即为$\frac{1+{2}^{x}+(1-2a){4}^{x}}{4}$≥4x
即1-2a≥$\frac{{4}^{x+1}-{2}^{x}-1}{{4}^{x}}$在x≤2恒成立,
由y=$\frac{{4}^{x+1}-{2}^{x}-1}{{4}^{x}}$=4-$\frac{1}{{2}^{x}}$-$\frac{1}{{4}^{x}}$=$\frac{17}{4}$-($\frac{1}{2}$+$\frac{1}{{2}^{x}}$)2,x≤2,
由t=$\frac{1}{{2}^{x}}$(t≥$\frac{1}{4}$),可得y=$\frac{17}{4}$-($\frac{1}{2}$+t)2递减,
即有t=$\frac{1}{4}$,即x=2时,取得最大值$\frac{59}{16}$,
即有1-2a≥$\frac{59}{16}$,解得a≤-$\frac{43}{32}$.
故选:C.

点评 本题考查不等式恒成立问题的解法,注意运用转化思想和参数分离,同时考查对数函数和指数函数的单调性的运用,考查二次函数的最值的求法,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网