搜索
题目内容
已知一个圆的圆心为坐标原点
,半径为
.从这个圆上任意一点
向
轴作垂线
,
为垂足.
(Ⅰ)求线段
中点
的轨迹方程;
(Ⅱ)已知直线
与
的轨迹相交于
两点,求
的面积
试题答案
相关练习册答案
(1)
;(2)
.
试题分析:(1)本题一般用动点转移法求轨迹方程,设动点
的坐标为
,则点
的坐标为
,而点
又是已知圆的点,把
点坐标代入圆的方程即能求出动点
的轨迹方程;(2)直接列方程组求出交点
的坐标,然后选用相应面积公式计算面积(本题中以OB为底,高就是点A的纵坐标的绝对值).
试题解析:(1)设
,
则
1分
由中点公式得:
3分
因为
在圆上,
∴
的轨迹方程为
6分
(2)据已知
8分
10分
12分
练习册系列答案
课程标准同步练习系列答案
课课练习系列答案
云南师大附小一线名师核心试卷系列答案
夺冠计划课时测控系列答案
课时精练系列答案
课时全练讲练测全程达标系列答案
课时天天练系列答案
课时学案系列答案
课堂达标100分系列答案
课堂过关循环练系列答案
相关题目
已知点F是抛物线C:
的焦点,S是抛物线C在第一象限内的点,且|SF|=
.
(Ⅰ)求点S的坐标;
(Ⅱ)以S为圆心的动圆与
轴分别交于两点A、B,延长SA、SB分别交抛物线C于M、N两点;
①判断直线MN的斜率是否为定值,并说明理由;
②延长NM交
轴于点E,若|EM|=
|NE|,求cos∠MSN的值.
已知椭圆
的离心率为
,椭圆短轴的一个端点与两个焦点构成的三角形的面积为
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)已知动直线
与椭圆
相交于
、
两点. ①若线段
中点的横坐标为
,求斜率
的值;②若点
,求证:
为定值.
已知圆
直线
与圆
相切,且交椭圆
于
两点,
是椭圆的半焦距,
,
(Ⅰ)求
的值;
(Ⅱ)O为坐标原点,若
求椭圆
的方程;
(Ⅲ) 在(Ⅱ)的条件下,设椭圆
的左右顶点分别为A,B,动点
,直线AS,BS与直线
分别交于M,N两点,求线段MN的长度的最小值.
已知A(-5,0),B(5,0),动点P满足|
|,
|
|,8成等差数列.
(1)求P点的轨迹方程;
(2)对于x轴上的点M,若满足|
|·|
|=
,则称点M为点P对应的“比例点”.问:对任意一个确定的点P,它总能对应几个“比例点”?
设抛物线
的焦点为
,准线为
,
,以
为圆心的圆
与
相切于点
,
的纵坐标为
,
是圆
与
轴除
外的另一个交点.
(I)求抛物线
与圆
的方程;
( II)已知直线
,
与
交于
两点,
与
交于点
,且
, 求
的面积.
经过点
且与直线
相切的动圆的圆心轨迹为
.点
在轨迹
上,且关于
轴对称,过线段
(两端点除外)上的任意一点作直线
,使直线
与轨迹
在点
处的切线平行,设直线
与轨迹
交于点
.
(1)求轨迹
的方程;
(2)证明:
;
(3)若点
到直线
的距离等于
,且
的面积为20,求直线
的方程.
已知动点
与定点
的距离和它到直线
的距离之比是常数
,记
的轨迹为曲线
.
(I)求曲线
的方程;
(II)设直线
与曲线
交于
两点,点
关于
轴的对称点为
,试问:当
变化时,直线
与
轴是否交于一个定点?若是,请写出定点的坐标,并证明你的结论;若不是,请说明理由.
设
、
分别为双曲线
的左、右焦点,
为双曲线的左顶点,以
为直径的圆交双曲线某条渐过线
、
两点,且满足
,则该双曲线的离心率为( )
A.
B.
C.
D.
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总
练习册解析答案