题目内容

12.已知函数f(x)=$\frac{m}{(x-1)^{2}}$,且f(2)=1;
(1)求m的值;
(2)用单调性定义证明:函数f(x)在(-∞,1)上为增函数.

分析 (1)由函数f(x)=$\frac{m}{(x-1)^{2}}$,且f(2)=1;可得$\frac{m}{(2-1)^{2}}$=1,解得m即可得出.
(2)由 (1)可得f(x)=$\frac{1}{(x-1)^{2}}$.(x<1).?x1<x2<1,只要证明f(x1)-f(x2)<0即可.

解答 (1)解:∵函数f(x)=$\frac{m}{(x-1)^{2}}$,且f(2)=1;
∴$\frac{m}{(2-1)^{2}}$=1,解得m=1.
(2)证明:由 (1)可得f(x)=$\frac{1}{(x-1)^{2}}$.(x<1).
?x1<x2<1,
则f(x1)-f(x2)=$\frac{1}{({x}_{1}-1)^{2}}$-$\frac{1}{({x}_{2}-1)^{2}}$=$\frac{({x}_{2}+{x}_{1}-2)({x}_{2}-{x}_{1})}{[({x}_{1}-1)({x}_{2}-1)]^{2}}$,
∵x1<x2<1,
∴x1+x2<2,x2-x1>0,
∴f(x1)-f(x2)<0,即f(x1)<f(x2).
∴函数f(x)在(-∞,1)上为增函数.

点评 本题考查了函数的单调性、求值,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网