题目内容

7.若$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$为不共线向量,$\overrightarrow{OA}$=k$\overrightarrow{{e}_{1}}$+12$\overrightarrow{{e}_{2}}$,$\overrightarrow{OB}$=4$\overrightarrow{{e}_{1}}$+5$\overrightarrow{{e}_{2}}$,$\overrightarrow{OC}$=-k$\overrightarrow{{e}_{1}}$-10$\overrightarrow{{e}_{2}}$,且A、B、C三点共线,求k的值.

分析 利用向量的运算和共线定理即可得出.

解答 解:∵$\overrightarrow{OA}$=k$\overrightarrow{{e}_{1}}$+12$\overrightarrow{{e}_{2}}$,$\overrightarrow{OB}$=4$\overrightarrow{{e}_{1}}$+5$\overrightarrow{{e}_{2}}$,$\overrightarrow{OC}$=-k$\overrightarrow{{e}_{1}}$-10$\overrightarrow{{e}_{2}}$,
∴$\overrightarrow{AB}$=(4-k)k$\overrightarrow{{e}_{1}}$-7$\overrightarrow{{e}_{2}}$,$\overrightarrow{BC}$=-k-4$\overrightarrow{{e}_{1}}$-15$\overrightarrow{{e}_{2}}$,
∵且A、B、C三点共线,
∴$\frac{4-k}{-7}$=$\frac{-k-4}{-15}$,
解得k=11.

点评 本题考查了向量的运算和共线定理、向量基本定理.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网