题目内容
1.过点(0,1)作曲线L:y=lnx的切线,切点为A.又L与x轴交于B点,区城D由L、x轴与直线AB围成,求区域D的面积及D绕x轴旋转一周所得旋转体的体积.分析 求出A的坐标和切线方程,则所求面积和体积均可用两个定积分的差来表示.
解答 解:设切线方程为y=kx+1,切点坐标为(a,b),
则$\left\{\begin{array}{l}{k=\frac{1}{a}}\\{ka+1=b}\\{lna=b}\end{array}\right.$,解得a=e2,b=2,∴A(e2,2).
将y=0代入y=lnx得x=1,∴B(1,0).
∴直线AB的方程为$\frac{y}{2}=\frac{x-1}{{e}^{2}-1}$,即y=$\frac{2x}{{e}^{2}-1}$-$\frac{2}{{e}^{2}-1}$.
∴区域D的面积为${∫}_{1}^{{e}^{2}}lnxdx$-${∫}_{1}^{{e}^{2}}$($\frac{2x}{{e}^{2}-1}$-$\frac{2}{{e}^{2}-1}$)dx=(xlnx-x)${|}_{1}^{{e}^{2}}$-($\frac{{x}^{2}-2x}{{e}^{2}-1}$)${|}_{1}^{{e}^{2}}$=2.
区域D绕x轴旋转一周所得几何体体积为π•${∫}_{1}^{{e}^{2}}(lnx)^{2}dx$-$\frac{1}{3}×π×{2}^{2}×({e}^{2}-1)$=π•x[(lnx)2-2lnx+2]|$\underset{\stackrel{{e}^{2}}{\;}}{1}$-$\frac{4π({e}^{2}-1)}{3}$=(2e2-2)•π-$\frac{4π({e}^{2}-1)}{3}$=$\frac{2π{(e}^{2}-1)}{3}$.
点评 本题考查了定积分在求面积、体积中的应用,是中档题.
练习册系列答案
相关题目
11.函数y=x+$\frac{5}{x+1}$(x≥2)取得最小值时的x的值为( )
| A. | $\sqrt{5}-1$ | B. | 2 | C. | $\sqrt{5}$ | D. | $\sqrt{5}+1$ |