题目内容
2.已知集合A={x|2x2-7x+3≤0,x∈R},B={x|0<x≤1}则集合A∩B=( )| A. | $(0,\frac{1}{2}]$ | B. | [1,3] | C. | $[\frac{1}{2},1]$ | D. | (0,1] |
分析 求出A与B中不等式的解集确定出A与B,找出两集合的交集即可.
解答 解:由A中的不等式变形得:(2x-1)(x-3)≤0,
解得:$\frac{1}{2}$≤x≤3,即A=[$\frac{1}{2}$,3];
B=(0,1],
∴A∩B=[$\frac{1}{2}$,1].
故选:C.
点评 此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.
练习册系列答案
相关题目
13.一几何体的三视图是如图所示的三个直角边为2的等腰直角三角形,则该几何体的表面积为( )

| A. | 8 | B. | 4$\sqrt{3}$+4 | C. | 4$\sqrt{2}$+4 | D. | 6+2$\sqrt{3}$ |
10.已知数列{an}为等差数列,若a1,a2,a3成等比数列,且a1=1,则公差d=( )
| A. | 0 | B. | 1 | C. | 2 | D. | 4 |
7.已知函数$f(x)=\left\{{\begin{array}{l}{\frac{x}{x-1},x≤0}\\{-{x^2}+6x-5,x>0}\end{array}}\right.$,若函数y=f[f(x)-a]有6个零点,则实数a的取值范围是( )
| A. | -4≤a≤1 | B. | -5≤a≤-4 | C. | 0≤a≤1 | D. | -5≤a≤-1 |
14.设a∈R,则“a>1”是“a2>|a-2|”的( )
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充分必要条件 | D. | 既不充分也不必要条件 |
12.已知函数f(x)=$\left\{\begin{array}{l}{|lnx|,x>0}\\{|{x}^{2}+4x+3|,x≤0}\end{array}\right.$若关于x的方程f2(x)+bf(x)+4=0有8个不同的实数根,则实数b的取值范围是( )
| A. | [-$\frac{17}{4}$,-4)∪{-5} | B. | [-$\frac{13}{3}$,-4)∪{-5} | C. | [-5,-$\frac{13}{3}$] | D. | [-5,-4] |