题目内容
10.设p:实数x满足x2-4ax+3a2<0(a>0);命题q:实数x满足$\left\{\begin{array}{l}{x^2}-x-6≤0\\{x^2}+2x-8>0\end{array}\right.$(1)若a=1,且“p且q”为真,求实数x的取值范围
(2)若¬p是¬q的充分不必要条件,求实数a的取值范围.
分析 (1)若a=1,分别求出p,q成立的等价条件,利用且p∧q为真,求实数x的取值范围;
(2)利用¬p是¬q的充分不必要条件,即q是p的充分不必要条件,求实数a的取值范围.
解答 解:由x2-4ax+3a2<0(a>0)得(x-a)(x-3a)<0,
得a<x<3a,a>0,则p:a<x<3a,a>0.
由$\left\{\begin{array}{l}{x^2}-x-6≤0\\{x^2}+2x-8>0\end{array}\right.$得$\left\{\begin{array}{l}{-2≤x≤3}\\{x>2或x<-4}\end{array}\right.$,解得2<x≤3.
即q:2<x≤3.
(1)若a=1,则p:1<x<3,
若p∧q为真,则p,q同时为真,
即$\left\{\begin{array}{l}{2<x≤3}\\{1<x<3}\end{array}\right.$,解得2<x<3,
∴实数x的取值范围(2,3).
(2)若¬p是¬q的充分不必要条件,即q是p的充分不必要条件,
∴$\left\{\begin{array}{l}{3a>3}\\{a≤2}\end{array}\right.$,即$\left\{\begin{array}{l}{a>1}\\{a≤2}\end{array}\right.$,
解得1<a≤2.
点评 本题主要考查复合命题与简单命题之间的关系,利用逆否命题的等价性将¬p是¬q的充分不必要条件,转化为q是p的充分不必要条件是解决本题的关键,
练习册系列答案
相关题目
20.已知函数f(x)=Asin(ωx+ϕ)(A>0,ω>0)的图象与直线y=a(0<a<A)的三个相邻交点的横坐标分别是2,4,8,则f(x)的单调递减区间是( )
| A. | [6kπ,6kπ+3](k∈Z) | B. | [6kπ-3,6kπ](k∈Z) | C. | [6k,6k+3](k∈Z) | D. | [6k-3,6k](k∈Z) |
1.已知集合A={-2,0,2},B={x|x2+x-2=0},则A∩B=( )
| A. | ∅ | B. | {2} | C. | {0} | D. | {-2} |
18.函数$y=sin(2x-\frac{π}{6})$图象的一条对称轴方程是( )
| A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{5π}{12}$ | D. | $\frac{π}{2}$ |
5.
如图,网格纸上小正方形的边长是1,在其上用粗线画出了某空间几何体的三视图,则这个空间几何体的体积为( )
| A. | π | B. | 2π | C. | 3π | D. | 4π |