题目内容

10.设p:实数x满足x2-4ax+3a2<0(a>0);命题q:实数x满足$\left\{\begin{array}{l}{x^2}-x-6≤0\\{x^2}+2x-8>0\end{array}\right.$
(1)若a=1,且“p且q”为真,求实数x的取值范围
(2)若¬p是¬q的充分不必要条件,求实数a的取值范围.

分析 (1)若a=1,分别求出p,q成立的等价条件,利用且p∧q为真,求实数x的取值范围;
(2)利用¬p是¬q的充分不必要条件,即q是p的充分不必要条件,求实数a的取值范围.

解答 解:由x2-4ax+3a2<0(a>0)得(x-a)(x-3a)<0,
得a<x<3a,a>0,则p:a<x<3a,a>0.
由$\left\{\begin{array}{l}{x^2}-x-6≤0\\{x^2}+2x-8>0\end{array}\right.$得$\left\{\begin{array}{l}{-2≤x≤3}\\{x>2或x<-4}\end{array}\right.$,解得2<x≤3.
即q:2<x≤3.
(1)若a=1,则p:1<x<3,
若p∧q为真,则p,q同时为真,
即$\left\{\begin{array}{l}{2<x≤3}\\{1<x<3}\end{array}\right.$,解得2<x<3,
∴实数x的取值范围(2,3).
(2)若¬p是¬q的充分不必要条件,即q是p的充分不必要条件,
∴$\left\{\begin{array}{l}{3a>3}\\{a≤2}\end{array}\right.$,即$\left\{\begin{array}{l}{a>1}\\{a≤2}\end{array}\right.$,
解得1<a≤2.

点评 本题主要考查复合命题与简单命题之间的关系,利用逆否命题的等价性将¬p是¬q的充分不必要条件,转化为q是p的充分不必要条件是解决本题的关键,

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网