题目内容

14.设直线ax-y+3=0与圆(x-1)2+(y-2)2=4有两个不同的交点A,B,且弦AB的长为2$\sqrt{3}$,则a等于0.

分析 先确定圆心和半径,然后利用圆中的垂径定理求得圆心到直线的距离,从而建立关于a的方程,即可求得a的值.

解答 解:圆(x-1)2+(y-2)2=4的圆心C(1,2),半径r=2
弦AB的中点为D,则|AD|=$\sqrt{3}$,由圆的性质得圆心到直线的距离d=1,
∴C到直线的距离为$\frac{|a-2+3|}{\sqrt{{a}^{2}+1}}$=1
即|a+1|=$\sqrt{{a}^{2}+1}$,
平方得a2+2a+1=a2+1,
即2a=0,
解得:a=0,
故答案为:0.

点评 本题考查了直线与圆相交的性质,注意圆中的直角三角形的应用,避免联立直线与圆的方程,利用半径,半弦,圆心距之间的关系是解决本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网