题目内容

13.设向量$\overrightarrow{AB}$=(2,6),$\overrightarrow{BC}$=(sinθ,1),θ∈(0,π).
(1)若A、B、C三点共线,求cos(θ+$\frac{3π}{2}$);
(2)若$\overrightarrow{AC}$•$\overrightarrow{BC}$<$\frac{33}{4}$,求θ的取值范围.

分析 (1)由条件利用三点共线的条件,求得sinθ的值,可得cos(θ+$\frac{3π}{2}$)的值.
(2)由条件利用两个向量的数量积的运算,求得2sinθ+sin2θ+7<$\frac{33}{4}$,求得-$\frac{5}{2}$<sinθ<$\frac{1}{2}$,由此求得θ的范围.

解答 解:(1)向量$\overrightarrow{AB}$=(2,6),$\overrightarrow{BC}$=(sinθ,1),θ∈(0,π),若A、B、C三点共线,
则有$\frac{sinθ}{2}$=$\frac{1}{6}$,求得sinθ=$\frac{1}{3}$,∴cos(θ+$\frac{3π}{2}$)=sinθ=$\frac{1}{3}$.
(2)∵$\overrightarrow{AC}$•$\overrightarrow{BC}$=(2+sinθ,7)•(sinθ,1)=2sinθ+sin2θ+7<$\frac{33}{4}$,
求得-$\frac{5}{2}$<sinθ<$\frac{1}{2}$,∴2kπ-$\frac{7π}{6}$<θ<2kπ+$\frac{π}{6}$,k∈Z.
即要求的θ的取值范围为( 2kπ-$\frac{7π}{6}$,2kπ+$\frac{π}{6}$ ),k∈Z.

点评 本题主要考查三点共线的条件,两个向量的数量积的运算,解三角不等式,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网