题目内容
20.| A. | $\frac{3}{5}$ | B. | $\frac{4}{5}$ | C. | $\frac{7}{10}$ | D. | $\frac{9}{10}$ |
分析 由茎叶图中的数据,求出甲、乙二人的平均成绩,
列不等式求出m的取值集合,再计算所求的概率值.
解答 解:由茎叶图知,
甲的平均成绩为$\frac{1}{3}$×(78+82+83)=81;
乙的平均成绩为$\frac{1}{3}$×(80+83+80+m)=81+$\frac{m}{3}$,
又∵81<81+$\frac{m}{3}$,
∴m>0,
又m∈N,
∴m的可能取值集合为{1,2,3,4,5,6,7,8,9}.
∴乙队平均得分超过甲队平均得分的概率是P=$\frac{9}{10}$.
故选:D.
点评 本题考查了茎叶图与平均数的应用问题,也考查了概率的计算问题,是基础题.
练习册系列答案
相关题目
10.在等腰梯形ABCD中,已知AB∥DC,AB=2,BC=1,∠ABC=60°,动点E和F分别在线段BC和DC上,且$\overrightarrow{BE}=λ\overrightarrow{BC},\overrightarrow{DF}=\frac{1}{9λ}\overrightarrow{DC}$,则$\overrightarrow{AE}•\overrightarrow{AF}$的最小值为( )
| A. | $\frac{27}{18}$ | B. | $\frac{29}{18}$ | C. | $\frac{17}{18}$ | D. | $\frac{13}{18}$ |
11.设a∈R,若函数y=ex+ax,x∈R有小于零的极值点,则实数a的取值范围是( )
| A. | (-∞,-1) | B. | (-1,+∞) | C. | (-1,0) | D. | (-∞,0) |
8.从数字0,1,2,3,4,5中任选3个数字,可组成没有重复数字的三位数共有( )
| A. | 60 | B. | 90 | C. | 100 | D. | 120 |
5.
函数y=Asin(2x+φ)(A>0,|φ|<π)在一个周期内的图象如图所示,则此函数的解析式为( )
| A. | y=2sin(2x+$\frac{π}{3}$) | B. | y=2sin(2x-$\frac{2π}{3}$) | C. | y=2sin(2x-$\frac{π}{3}$) | D. | y=2sin(2x+$\frac{2π}{3}$) |
12.为了解喜好体育运动是否与性别有关,某报记者随机采访50个路人,将调查情况进行整理后制成下表:
(1)在调查的结果中,喜好体育运动的女性有10人,不喜好体育运动的男性有5人,请将下面的2×2列联表补充完整,并判断能否在犯错误的概率不超过0.005的前提下认为喜好体育运动与性别有关?说明你的理由;
(2)若从年龄在[15,25),[25,35)的被调查者中各随机选取两人进行追踪调查,记选中的4人中不喜好体育运动的人数为X,求随机变量X的分布列和数学期望.
下面的临界值表供参考:
(参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)
| 年龄(岁) | [15,25) | [25,35) | [35,45) 15 | [45,55) | [55,65) | [65,75) |
| 频数 | 5 | 10 | 8 | 10 | 5 | 5 |
| 喜好人数 | 4 | 6 | 6 | 3 | 3 |
| 喜好体育运动 | 不喜好体育运动 | 合计 | |
| 男生 | 5 | ||
| 女生 | 10 | ||
| 合计 | 50 |
下面的临界值表供参考:
| P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |