ÌâÄ¿ÄÚÈÝ
5£®ÈôÏòÁ¿$\overrightarrow{a}$=£¨$\sqrt{3}$sin¦Øx£¬sin¦Øx£©£¬$\overrightarrow{b}$=£¨cos¦Øx£¬sin¦Øx£©ÆäÖЦأ¾0£¬¼Çº¯Êýf£¨x£©=$\overrightarrow{a}$$•\overrightarrow{b}$-$\frac{1}{2}$£¬ÇÒº¯Êýf£¨x£©µÄͼÏóÏàÁÚÁ½Ìõ¶Ô³ÆÖáÖ®¼äµÄ¾àÀëÊÇ$\frac{¦Ð}{2}$£®£¨¢ñ£©Çóf£¨x£©µÄ±í´ïʽ¼°f£¨x£©µÄµ¥µ÷µÝÔöÇø¼ä£»
£¨¢ò£©Éè¡÷ABCÈýÄÚ½ÇA¡¢B¡¢CµÄ¶ÔÓ¦±ß·Ö±ðΪa¡¢b¡¢c£¬Èôa+b=3£¬c=$\sqrt{3}$£¬f£¨C£©=1£¬Çó¡÷ABCµÄÃæ»ý£®
·ÖÎö £¨¢ñ£©ÓÉÒÑÖªÀûÓÃÆ½ÃæÏòÁ¿ÊýÁ¿»ýµÄÔËË㻯¼ò¿ÉµÃº¯Êý½âÎöʽf£¨x£©=sin£¨2¦Øx-$\frac{¦Ð}{6}$£©£¬ÓÉÌâÒâ¿ÉÖªÆäÖÜÆÚΪ¦Ð£¬ÀûÓÃÖÜÆÚ¹«Ê½¿ÉÇ󦨣¬¼´¿ÉµÃ½âº¯Êý½âÎöʽ£¬ÓÉ2k¦Ð-$\frac{¦Ð}{2}$¡Ü2x-$\frac{¦Ð}{6}$¡Ü2k¦Ð+$\frac{¦Ð}{2}$£¬k¡ÊZ£¬
¼´¿É½âµÃf£¨x£©µÄµ¥µ÷µÝÔöÇø¼ä£®
£¨¢ò£©ÓÉf£¨C£©=1£¬µÃ$sin£¨2C-\frac{¦Ð}{6}£©=1$£¬½áºÏ·¶Î§0£¼C£¼¦Ð£¬¿ÉµÃ-$\frac{¦Ð}{6}$£¼2C-$\frac{¦Ð}{6}$£¼$\frac{11¦Ð}{6}$£¬½âµÃC=$\frac{¦Ð}{3}$£¬½áºÏÒÑÖªÓÉÓàÏÒ¶¨ÀíµÃabµÄÖµ£¬ÓÉÃæ»ý¹«Ê½¼´¿É¼ÆËãµÃ½â£®
½â´ð £¨±¾Ð¡ÌâÂú·Ö12·Ö£©
½â£º£¨¢ñ£©¡ß$\overrightarrow{a}$=£¨$\sqrt{3}$sin¦Øx£¬sin¦Øx£©£¬$\overrightarrow{b}$=£¨cos¦Øx£¬sin¦Øx£©£¬
¡à$f£¨x£©=\overrightarrow a•\overrightarrow b-\frac{1}{2}=\sqrt{3}sin¦Øxcos¦Øx+{sin^2}¦Øx-\frac{1}{2}=sin£¨2¦Øx-\frac{¦Ð}{6}£©$£¬¡£¨3·Ö£©
ÓÉÌâÒâ¿ÉÖªÆäÖÜÆÚΪ¦Ð£¬¹Ê¦Ø=1£¬Ôòf£¨x£©=sin£¨2x-$\frac{¦Ð}{6}$£©£¬¡£¨4·Ö£©
ÓÉ2k¦Ð-$\frac{¦Ð}{2}$¡Ü2x-$\frac{¦Ð}{6}$¡Ü2k¦Ð+$\frac{¦Ð}{2}$£¬k¡ÊZ£¬
µÃk¦Ð-$\frac{¦Ð}{6}$¡Üx¡Ük¦Ð+$\frac{¦Ð}{3}$£¬
¡àf£¨x£©µÄµ¥µ÷µÝÔöÇø¼äΪ£º[k¦Ð-$\frac{¦Ð}{6}$£¬k¦Ð+$\frac{¦Ð}{3}$]£¬k¡ÊZ£¬¡£¨6·Ö£©
£¨¢ò£©ÓÉf£¨C£©=1£¬µÃ$sin£¨2C-\frac{¦Ð}{6}£©=1$£¬
¡ß0£¼C£¼¦Ð£¬¡à-$\frac{¦Ð}{6}$£¼2C-$\frac{¦Ð}{6}$£¼$\frac{11¦Ð}{6}$£¬
¡à2C-$\frac{¦Ð}{6}$=$\frac{¦Ð}{2}$£¬½âµÃC=$\frac{¦Ð}{3}$£® ¡£¨8·Ö£©
ÓÖ¡ßa+b=3£¬$c=\sqrt{3}$£¬ÓÉÓàÏÒ¶¨ÀíµÃc2=a2+b2-2abcos$\frac{¦Ð}{3}$£¬
¡à£¨a+b£©2-3ab=3£¬¼´ab=2£¬
ÓÉÃæ»ý¹«Ê½µÃÈý½ÇÐÎÃæ»ýΪ$\frac{1}{2}absinC=\frac{{\sqrt{3}}}{2}$£®¡£¨12·Ö£©
µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÁËÆ½ÃæÏòÁ¿ÊýÁ¿»ýµÄÔËË㣬Èý½Çº¯ÊýºãµÈ±ä»»µÄÓ¦Óã¬ÖÜÆÚ¹«Ê½£¬ÕýÏÒº¯ÊýµÄͼÏóºÍÐÔÖÊ£¬ÓàÏÒ¶¨Àí£¬Èý½ÇÐÎÃæ»ý¹«Ê½ÔÚ½âÈý½ÇÐÎÖеÄÓ¦Ó㬿¼²éÁËת»¯Ë¼ÏëºÍÊýÐνáºÏ˼Ï룬ÊôÓÚÖеµÌ⣮
| A£® | f£¨x£©=ln$\sqrt{1+{x}^{2}}$ | B£® | f£¨x£©=cos2£¨x-$\frac{¦Ð}{4}$£© | C£® | f£¨x£©=$\frac{£¨x-1£©^{2}}{1+{x}^{2}}$ | D£® | f£¨x£©=$\frac{{2}^{x}}{{2}^{x}-1}$ |
| A£® | 189 | B£® | 72 | C£® | 60 | D£® | 33 |
| A£® | an=£¨-1£©n-1+1 | B£® | an=$\left\{\begin{array}{l}{2£¬nÎªÆæÊý}\\{0£¬nΪżÊý}\end{array}\right.$ | ||
| C£® | an=2sin$\frac{n¦Ð}{2}$ | D£® | an=cos£¨n-1£©¦Ð+1 |
| A£® | {0£¬4} | B£® | {-2£¬-1£¬0} | C£® | {-1£¬0£¬1} | D£® | {0£¬1£¬2} |