ÌâÄ¿ÄÚÈÝ
ijµØµÄ³ö×â³µ¼Û¸ñ¹æ¶¨£ºÆð²½·ÑaÔª£¬¿ÉÐÐ3¹«À3¹«ÀïÒÔºó°´Ã¿¹«ÀïbÔª¼ÆË㣬¿ÉÔÙÐÐ7¹«À³¬¹ý10¹«Àﰴÿ¹«ÀïcÔª¼ÆË㣨ÕâÀïa¡¢b¡¢c¹æ¶¨ÎªÕýµÄ³£Êý£¬ÇÒc£¾b£©£¬¼ÙÉè²»¿¼ÂǶ³µºÍºìÂ̵ƵÈËùÒýÆðµÄ·ÑÓã¬Ò²²»¿¼ÂÇʵ¼ÊÊÕÈ¡·ÑÓÃÈ¥µô²»×ãÒ»ÔªµÄÁãÍ·µÈʵ¼ÊÇé¿ö£¬¼´Ã¿Ò»´Î³Ë³µµÄ³µ·ÑÓÉÐгµÀï³ÌΨһȷ¶¨£®
£¨1£©ÈôÈ¡a=14£¬b=2.4£¬c=3.6£¬Ð¡Ã÷³Ë³ö×â³µ´ÓѧУµ½¼Ò£¬¹²8¹«ÀÇëÎÊËûÓ¦¸¶³ö×â³µ·Ñ¶àÉÙÔª£¿£¨±¾Ð¡ÌâÖ»ÐèÒª»Ø´ð×îºó½á¹û£©
£¨2£©Çó³µ·Ñy£¨Ôª£©ÓëÐгµÀï³Ìx£¨¹«À֮¼äµÄº¯Êý¹ØÏµÊ½y=f£¨x£©£®
£¨1£©ÈôÈ¡a=14£¬b=2.4£¬c=3.6£¬Ð¡Ã÷³Ë³ö×â³µ´ÓѧУµ½¼Ò£¬¹²8¹«ÀÇëÎÊËûÓ¦¸¶³ö×â³µ·Ñ¶àÉÙÔª£¿£¨±¾Ð¡ÌâÖ»ÐèÒª»Ø´ð×îºó½á¹û£©
£¨2£©Çó³µ·Ñy£¨Ôª£©ÓëÐгµÀï³Ìx£¨¹«À֮¼äµÄº¯Êý¹ØÏµÊ½y=f£¨x£©£®
¿¼µã£º·Ö¶Îº¯ÊýµÄÓ¦ÓÃ,º¯ÊýÄ£Ð͵ÄÑ¡ÔñÓëÓ¦ÓÃ
רÌ⣺ӦÓÃÌâ,º¯ÊýµÄÐÔÖʼ°Ó¦ÓÃ
·ÖÎö£º£¨1£©ÓÉÌâÒâ¿ÉÖª£¬Õâ8¹«ÀïÄÚµÄǰ3¹«ÀïµÄÊÕ·ÑÊÇ14Ôª£¬³¬¹ý3¹«Àï¶ø10¹«ÀïÒÔÄÚÿ¹«Àï°´2.4Ôª¼Æ¼Û£¬Ôò8-3=5¹«ÀïµÄÊÕ·ÑÊÇ5¡Á2.4=12Ôª£¬Á½ÕßÏà¼Ó¼´ÊÇСÃ÷Ó¦¸¶µÄ³µ·Ñ£»
£¨2£©·ÖÈýÖÖÇé¿ö£ºÇ°3¹«Àï¡¢³¬¹ý3¹«Àï¶ø10¹«ÀïÒÔÄÚ¡¢´óÓÚ10¹«À·Ö±ðд³öº¯ÊýµÄ±í´ïʽ£¬×îºóÓ÷ֶκ¯Êý±íʾ£®
£¨2£©·ÖÈýÖÖÇé¿ö£ºÇ°3¹«Àï¡¢³¬¹ý3¹«Àï¶ø10¹«ÀïÒÔÄÚ¡¢´óÓÚ10¹«À·Ö±ðд³öº¯ÊýµÄ±í´ïʽ£¬×îºóÓ÷ֶκ¯Êý±íʾ£®
½â´ð£º
½â£º£¨1£©ÓÉÌâÒâ¿ÉÖª£¬Æð²½£¨3¹«ÀïÒÔÄÚ£©¼ÛÊÇ14Ôª£¬ÔòÕâ8¹«ÀïÄÚµÄǰ3¹«ÀïµÄÊÕ·ÑÊÇ14Ôª£¬³¬¹ý3¹«Àï¶ø10¹«ÀïÒÔÄÚÿ¹«Àï°´2.4Ôª¼Æ¼Û£¬Ôò8-3=5¹«ÀïµÄÊÕ·ÑÊÇ5¡Á2.4=12Ôª£¬×ܹ²ÊÕ·Ñ14+12=26£¨Ôª£©
¹ÊËûÓ¦¸¶³ö³ö×â³µ·Ñ26Ôª£®
£¨2£©3¹«ÀïÒÔÄÚ¼ÛÊÇaÔª£¬¼´0£¼x¡Ü3ʱ£¬y=a£¨Ôª£©£»
´óÓÚ3¹«Àï¶ø²»³¬¹ý10¹«Àïʱ£¬¼´3£¼x¡Ü10ʱ£¬ÊÕ·Ñy=a+£¨x-3£©b=bx+a-3b£¨Ôª£©£»
´óÓÚ10¹«Àïʱ£¬¼´x£¾10ʱ£¬ÊÕ·Ñy=a+7¡Áb+£¨x-10£©c=cx+a+7b-10c£¨Ôª£©£®
¡ày=
£¬
¹ÊËûÓ¦¸¶³ö³ö×â³µ·Ñ26Ôª£®
£¨2£©3¹«ÀïÒÔÄÚ¼ÛÊÇaÔª£¬¼´0£¼x¡Ü3ʱ£¬y=a£¨Ôª£©£»
´óÓÚ3¹«Àï¶ø²»³¬¹ý10¹«Àïʱ£¬¼´3£¼x¡Ü10ʱ£¬ÊÕ·Ñy=a+£¨x-3£©b=bx+a-3b£¨Ôª£©£»
´óÓÚ10¹«Àïʱ£¬¼´x£¾10ʱ£¬ÊÕ·Ñy=a+7¡Áb+£¨x-10£©c=cx+a+7b-10c£¨Ôª£©£®
¡ày=
|
µãÆÀ£º±¾Ì⿼µãÊǷֶκ¯ÊýµÄÓ¦Ó㬷ֶÎÄ£ÐÍÊǽâ¾öʵ¼ÊÎÊÌâµÄºÜÖØÒªµÄº¯ÊýÄ£ÐÍ£¬ÆäÌØµãÊÇÔÚ²»Í¬µÄ×Ô±äÁ¿È¡Öµ·¶Î§ÄÚ£¬º¯Êý½âÎöʽ²»Í¬£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
Èô½«º¯Êýf£¨x£©=
sinx-
cosxµÄͼÏóÏòÓÒÆ½ÒÆm¸öµ¥Î»³¤¶È£¬µÃµ½µÄͼÏó¹ØÓÚÔµã¶Ô³Æ£¬Ôòm=£¨¡¡¡¡£©
| ||
| 4 |
| 1 |
| 4 |
A¡¢
| ||
B¡¢
| ||
C¡¢
| ||
D¡¢
|
ÒÑÖªm£¬nÊÇÁ½Ìõ²»Í¬µÄÖ±Ïߣ¬¦Á£¬¦ÂÊÇÁ½¸ö²»ÖØºÏµÄÆ½Ã棬ÔòÏÂÁÐÃüÌâÕýÈ·µÄÊÇ£¨¡¡¡¡£©
| A¡¢Èôm¡În£¬n?¦Á£¬ÔòmƽÐÐÓÚÆ½Ãæ¦ÁÄÚµÄÈÎÒâÒ»ÌõÖ±Ïß |
| B¡¢Èôm?¦Á£¬m¡Î¦Â£¬n¡Î¦Â£¬Ôò¦Á¡Î¦Â |
| C¡¢Èôm¡Í¦Á£¬n¡Í¦Â£¬m¡În£¬Ôò¦Á¡Î¦Â |
| D¡¢Èô¦Á¡Î¦Â£¬m?¦Á£¬n?¦Â£¬Ôòm¡În |
ÒÑÖªµãP£¨x£¬y£©µÄ×ø±êÂú×ãÌõ¼þ
£¬Ôòx2+y2µÄ×î´óֵΪ£¨¡¡¡¡£©
|
| A¡¢17 | B¡¢18 | C¡¢20 | D¡¢21 |
Éèf£¨x£©=lg£¨4-x2£©£¬Ôòf£¨
£©+f£¨
£©µÄ¶¨ÒåÓòÊÇ£¨¡¡¡¡£©
| x |
| 2 |
| 2 |
| x |
| A¡¢£¨-1£¬1£© |
| B¡¢£¨-4£¬4£© |
| C¡¢£¨-4£¬-1£©¡È£¨1£¬4£© |
| D¡¢£¨-2£¬-1£©¡È£¨1.2£© |