题目内容

3.观察式子:1+$\frac{1}{{2}^{2}}$<$\frac{3}{2}$;1+$\frac{1}{{2}^{2}}$+$\frac{1}{{3}^{2}}$<$\frac{5}{3}$,1+$\frac{1}{{2}^{2}}$+$\frac{1}{{3}^{2}}$+$\frac{1}{{4}^{2}}$<$\frac{7}{4}$…则可归纳出第n-1个式子为1+$\frac{1}{{2}^{2}}$+$\frac{1}{{3}^{2}}$+…+$\frac{1}{{n}^{2}}$<$\frac{2n-1}{n}$.

分析 根据规律,左边是正整数n的平方的倒数和,右边是分子是正奇数,分母是正整数n,可以猜想结论.

解答 解:根据规律,左边是正整数n的平方的倒数和,右边是分子是正奇数,分母是正整数n,
可以猜想的结论为:当n∈N且n≥2时,恒有1+$\frac{1}{{2}^{2}}$+$\frac{1}{{3}^{2}}$+…+$\frac{1}{{n}^{2}}$<$\frac{2n-1}{n}$.
故答案为:1+$\frac{1}{{2}^{2}}$+$\frac{1}{{3}^{2}}$+…+$\frac{1}{{n}^{2}}$<$\frac{2n-1}{n}$.

点评 本题考查的知识点是归纳推理其中分析已知中的式子,分析出两个式子之间的数据变化规律是解答的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网