题目内容

7.计算曲线y=x2+1和y=4-x2,以及直线x=1和x=-1所围成的区域面积,所求面积=$\frac{14}{3}$.

分析 先根据题意画出区域,然后依据图形利用定积分表示出曲边梯形的面积,最后用定积分的定义求出所求即可.

解答 解:S阴影=${∫}_{-1}^{1}$[(4-x2)-(x2+1)]dx=${∫}_{-1}^{1}$(3-2x2)dx=(3x-$\frac{2}{3}$x3)|${\;}_{-1}^{1}$=(3-$\frac{2}{3}$)-(-3+$\frac{2}{3}$)=$\frac{14}{3}$,
故答案为:$\frac{14}{3}$.

点评 本题主要考查了学生会求出原函数的能力,以及考查了数形结合的思想,同时会利用定积分求图形面积的能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网