题目内容
5.计算:${(2\frac{1}{4})^{\frac{1}{2}}}-{(3\frac{3}{8})^{-\frac{2}{3}}}$=$\frac{19}{18}$.分析 利用有理数指数幂的性质、运算法则求解.
解答 解:${(2\frac{1}{4})^{\frac{1}{2}}}-{(3\frac{3}{8})^{-\frac{2}{3}}}$
=($\frac{9}{4}$)${\;}^{\frac{1}{2}}$-($\frac{27}{8}$)${\;}^{-\frac{2}{3}}$
=$\frac{3}{2}-(\frac{3}{2})^{-2}$
=$\frac{3}{2}-\frac{4}{9}$
=$\frac{19}{18}$.
故答案为:$\frac{19}{18}$.
点评 本题考查有理数指数幂化简求值,是基础题,解题时要认真审题,注意有理数指数幂的性质、运算法则的合理运用.
练习册系列答案
相关题目
6.若a>b>0,0<c<1,则( )
| A. | logac<logbc | B. | ca>cb | C. | ac<ab | D. | logca<logcb |
16.若函数f(x)=x3-3x-a,当x∈[0,3]上时,m≤f(x)≤n恒成立,则n-m的最小值为( )
| A. | 2 | B. | 4 | C. | 18 | D. | 20 |
20.设A={(x,y)|2x+y=7},B={(x,y)|x+2y=5},则A∩B=( )
| A. | {x=3或y=1} | B. | {3,1} | C. | {(3,1)} | D. | (3,1) |
10.某公司为确定下一年投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年利润y(单位:万元)的影响,对近5年的宣传费xi和年利润yi(i=1,2,3,4,5)进行了统计,列出了下表:
员工小王和小李分别提供了不同的方案.
(1)小王准备用线性回归模型拟合y与x的关系,请你建立y关于x的线性回归方程(系数精确到0.01);
(2)小李决定选择对数回归模拟拟合y与x的关系,得到了回归方程:$\widehat{y}$=1.450lnx+0.024,并提供了相关指数R2=0.995,请用相关指数说明选择哪个模型更合适,并预测年宣传费为4万元的年利润(精确到0.01)(小王也提供了他的分析数据$\sum_{i=1}^{5}$(yi-$\widehat{y}$i)2=1.15)
参考公式:相关指数R2=1-$\frac{\sum_{i=1}^{n}({y}_{i}-{\widehat{y}}_{i})^{2}}{\sum_{i=1}^{n}({y}_{i}-\overline{y})^{2}}$
回归方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$中斜率和截距的最小二乘法估计公式分别为$\widehat{b}$=$\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y)}}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}$,$\widehat{a}$=$\widehat{y}$-$\widehat{b}$x,参考数据:ln40=3.688,${\sum_{i=1}^5{({x_i}-\overline x)}^2}$=538.
| x(单位:千元) | 2 | 4 | 7 | 17 | 30 |
| y(单位:万元) | 1 | 2 | 3 | 4 | 5 |
(1)小王准备用线性回归模型拟合y与x的关系,请你建立y关于x的线性回归方程(系数精确到0.01);
(2)小李决定选择对数回归模拟拟合y与x的关系,得到了回归方程:$\widehat{y}$=1.450lnx+0.024,并提供了相关指数R2=0.995,请用相关指数说明选择哪个模型更合适,并预测年宣传费为4万元的年利润(精确到0.01)(小王也提供了他的分析数据$\sum_{i=1}^{5}$(yi-$\widehat{y}$i)2=1.15)
参考公式:相关指数R2=1-$\frac{\sum_{i=1}^{n}({y}_{i}-{\widehat{y}}_{i})^{2}}{\sum_{i=1}^{n}({y}_{i}-\overline{y})^{2}}$
回归方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$中斜率和截距的最小二乘法估计公式分别为$\widehat{b}$=$\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y)}}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}$,$\widehat{a}$=$\widehat{y}$-$\widehat{b}$x,参考数据:ln40=3.688,${\sum_{i=1}^5{({x_i}-\overline x)}^2}$=538.
17.设数列{an}的通项公式为an=2n-7(n∈N*)则|a1|+|a2|+…+|a7|=( )
| A. | 7 | B. | 0 | C. | 18 | D. | 25 |