题目内容
12.已知两曲线f(x)=cosx与g(x)=$\sqrt{3}$sinx的一个交点为P,则点P到x轴的距离为$\frac{\sqrt{3}}{2}$.分析 由题意根据cosx=$\sqrt{3}$sinx,求得x的值,可得y的值,从而得到点P到x轴的距离为|y|的值.
解答 解:两曲线f(x)=cosx与g(x)=$\sqrt{3}$sinx的一个交点为P,设点P的坐标为(x,y),
由cosx=$\sqrt{3}$sinx,可得tanx=$\frac{\sqrt{3}}{3}$,
∴x=kπ+$\frac{π}{6}$,k∈Z,∴y=±$\frac{\sqrt{3}}{2}$,
∴点P到x轴的距离为|y|=$\frac{\sqrt{3}}{2}$,
故答案为:$\frac{\sqrt{3}}{2}$.
点评 本题主要考查求两条曲线的交点坐标,正弦函数和余弦函数的图象,属于基础题.
练习册系列答案
相关题目
14.已知X的分布列为
设y=2x+3,则E(Y)的值为( )
| X | -1 | 0 | 1 |
| P | $\frac{1}{2}$ | $\frac{1}{3}$ | $\frac{1}{6}$ |
| A. | $\frac{7}{3}$ | B. | 4 | C. | -1 | D. | 1 |
3.不等式$\frac{3x}{2x+1}≤1$的解集为( )
| A. | (-∞,1] | B. | $[{-\frac{1}{2},1}]$ | C. | $({-\frac{1}{2},1}]$ | D. | $({-∞,-\frac{1}{2}})∪[{1,+∞})$ |
4.某学校为了调查喜欢语文学科与性别的关系,随机调查了一些学生情况,具体数据如表:
为了判断喜欢语文学科是否与性别有关系,根据表中的数据,得到K2的观测值k=$\frac{50×(13×20-10×7)2}{23×27×20×30}$≈4.844,因为k≥3.841,根据下表中的参考数据:
判定喜欢语文学科与性别有关系,那么这种判断出错的可能性为( )
| 调查统计 | 不喜欢语文 | 喜欢语文 |
| 男 | 13 | 10 |
| 女 | 7 | 20 |
| P(K2≥k0) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k0 | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
| A. | 95% | B. | 50% | C. | 25% | D. | 5% |
1.已知x0是函数$f(x)={(\frac{1}{2})^x}+\frac{1}{x}$的一个零点,且x1∈(-∞,x0),x2∈(x0,0),则( )
| A. | f(x1)<0,f(x2)<0 | B. | f(x1)>0,f(x2)>0 | C. | f(x1)<0,f(x2)>0 | D. | f(x1)>0,f(x2)<0 |
2.在△ABC中,内角A、B、C的对边分别为a、b、c,若acosB+bcosA=2ccosC,a+b=6,则三角形ABC的面积S△ABC的最大值是( )
| A. | $\frac{\sqrt{3}}{4}$ | B. | $\frac{9\sqrt{3}}{2}$ | C. | $\frac{9\sqrt{3}}{4}$ | D. | $\frac{9}{4}$ |