题目内容
数列1,(1+2),(1+2+22),…,(1+2+22+…+2n-1)…的前n项和为( )
分析:由1+2+22+…+2n-1=
=2n-1可知,数列的前n项和为:(21-1)+(22-1)+(23-1)+…+(2n-1)=21+22+23+…+2n-n=
-n=2n+1-2-n
| 1×(1-2n) |
| 1-2 |
| 2(1-2n) |
| 1-2 |
解答:解:∵1+2+22+…+2n-1=
=2n-1
∴数列的前n项和为:1+(1+2)+(1+2+22)+…+(1+2+22+…+2n-1)
=(21-1)+(22-1)+(23-1)+…+(2n-1)
=21+22+23+…+2n-n
=
-n=2n+1-2-n
故选D
| 1×(1-2n) |
| 1-2 |
∴数列的前n项和为:1+(1+2)+(1+2+22)+…+(1+2+22+…+2n-1)
=(21-1)+(22-1)+(23-1)+…+(2n-1)
=21+22+23+…+2n-n
=
| 2(1-2n) |
| 1-2 |
故选D
点评:本题为数列的求和问题,求出数列的通项公式并应用到数列中是解决问题的关键,属中档题.
练习册系列答案
相关题目