题目内容

9.若两个等差数列{an},{bn}的前n项和分别为Sn,Tn,若对于任意的n∈N*,都有$\frac{{S}_{n}}{{T}_{n}}$=$\frac{2n-3}{4n-3}$,则$\frac{{a}_{9}}{{b}_{5}+{b}_{7}}$+$\frac{{a}_{3}}{{b}_{8}+{b}_{4}}$=$\frac{19}{41}$.

分析 由等差数列的性质可得:$\frac{{a}_{9}}{{b}_{5}+{b}_{7}}$+$\frac{{a}_{3}}{{b}_{8}+{b}_{4}}$=$\frac{{a}_{9}}{2{b}_{6}}$+$\frac{{a}_{3}}{2{b}_{6}}$=$\frac{{a}_{6}}{{b}_{6}}$.又$\frac{{a}_{6}}{{b}_{6}}$=$\frac{\frac{11({a}_{1}+{a}_{11})}{2}}{\frac{11({b}_{1}+{b}_{11})}{2}}$=$\frac{{S}_{11}}{{T}_{11}}$,即可得出.

解答 解:由等差数列的性质可得:$\frac{{a}_{9}}{{b}_{5}+{b}_{7}}$+$\frac{{a}_{3}}{{b}_{8}+{b}_{4}}$=$\frac{{a}_{9}}{2{b}_{6}}$+$\frac{{a}_{3}}{2{b}_{6}}$=$\frac{{a}_{6}}{{b}_{6}}$.
∵对于任意的n∈N*,都有$\frac{{S}_{n}}{{T}_{n}}$=$\frac{2n-3}{4n-3}$,
∴$\frac{{a}_{6}}{{b}_{6}}$=$\frac{\frac{11({a}_{1}+{a}_{11})}{2}}{\frac{11({b}_{1}+{b}_{11})}{2}}$=$\frac{{S}_{11}}{{T}_{11}}$=$\frac{2×11-3}{4×11-3}$=$\frac{19}{41}$.
故答案为:$\frac{19}{41}$.

点评 本题考查了等差数列的通项公式及其前n项和公式性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网