题目内容
3.甲、乙两人相约周六上午8:00到8:30之间在公交车站乘车去新华书店,先到者若等了15分钟还没有等到对方,则需发微信联系.假设两人的出发时间是独立的,在8:00到8:30之间到达车站的时间是等可能的,则两人不需要发微信联系就能见面的概率是( )| A. | $\frac{3}{4}$ | B. | $\frac{1}{2}$ | C. | $\frac{1}{3}$ | D. | $\frac{1}{4}$ |
分析 由题意知本题是一个几何概型,视30分钟为一个单位.试验包含的所有事件是Ω={(x,y)|0<x<1,0<y<1},做出事件对应的集合表示的面积,写出满足条件的事件是A={(x,y)|0<x<1,0<y<1,|x-y|≤$\frac{1}{2}$},算出事件对应的集合表示的面积,根据几何概型概率公式得到结果.
解答 解:视30分钟为一个单位1.设两人到达约会地点的时刻分别为x,y,依题意,必须满足|x-y|≤$\frac{1}{2}$才能相遇.我们把他们到达的时刻分别作为横坐标和纵坐标,于是两人到达的时刻均匀地分布在一个边长为1的正方形内,面积为1,
甲、乙两人的到达时刻(x,y)满足|x-y|≤$\frac{1}{2}$,面积为$\frac{1}{4}$,
所以两人不需要发微信联系就能见面的概率是1-$\frac{1}{4}$=$\frac{3}{4}$.
故选A.
点评 本题是一个几何概型,对于这样的问题,一般要通过把试验发生包含的事件同集合结合起来,根据集合对应的图形做出面积,用面积的比值得到结果.
练习册系列答案
相关题目
19.已知集合A={x|0<x≤3,x∈N},B={x|y=$\sqrt{{x}^{2}-9}$},则集合A∩(∁RB)=( )
| A. | {1,2} | B. | {1,2,3} | C. | {0,1,2} | D. | (0,1) |
20.某校在高一年级学生中,对自然科学类、社会科学类校本选修课程的选课意向进行调查.现从高一年级学生中随机抽取180名学生,其中男生105名;在这名180学生中选择社会科学类的男生、女生均为45名.
(1)试问:从高一年级学生中随机抽取1人,抽到男生的概率约为多少?
(2)根据抽取的180名学生的调查结果,完成下列列联表.并判断能否在犯错误的概率不超过0.025的前提下认为科类的选择与性别有关?
附:${K^2}=\frac{{n{{({ab-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$,其中n=a+b+c+d.
(1)试问:从高一年级学生中随机抽取1人,抽到男生的概率约为多少?
(2)根据抽取的180名学生的调查结果,完成下列列联表.并判断能否在犯错误的概率不超过0.025的前提下认为科类的选择与性别有关?
| 选择自然科学类 | 选择社会科学类 | 合计 | |
| 男生 | 60 | 45 | 105 |
| 女生 | 30 | 45 | 75 |
| 合计 | 90 | 90 | 180 |
| P(K2≥k0) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| K0 | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
18.从圆x2+y2-2x-2y+1=0外一点P(3,2)向这个圆作两条切线,则两条切线夹角的余弦值为( )
| A. | $\frac{1}{2}$ | B. | $\frac{3}{5}$ | C. | $\frac{{\sqrt{3}}}{2}$ | D. | 0 |
8.在同一坐标系中,曲线y=($\frac{1}{3}$)x与抛物线y2=x的交点横坐标所在区间为( )
| A. | (0,$\frac{1}{3}$) | B. | ($\frac{1}{3}$,$\frac{1}{2}$) | C. | ($\frac{1}{2}$,$\frac{2}{3}$) | D. | ($\frac{2}{3}$,1) |
12.下列命题中的假命题是( )
| A. | ?x∈R,x2≥0 | B. | ?x∈R,2x-1>0 | ||
| C. | ?x∈R,lgx<1 | D. | ?x∈R,sinx+cosx=2 |