题目内容

9.在△ABC中,若c2+ab=a2+b2,则角C=60°.

分析 利用余弦定理表示出cosC,将已知等式变形后代入求出cosC的值,即可确定出C的度数.

解答 解:∵在△ABC中,c2+ab=a2+b2,即a2+b2-c2=ab,
∴cosC=$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{2ab}$=$\frac{ab}{2ab}$=$\frac{1}{2}$,
∵0<B<180°,
则C=60°.
故答案为:60°.

点评 此题考查了余弦定理,以及特殊角的三角函数值,熟练掌握余弦定理是解本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网