题目内容
过抛物线的焦点的直线与抛物线交于A.B两点,且△OAB(O为坐标原点)的面积为,则= .
2
已知函数下列结论中① ②函数的图象是中心对称图形 ③若是的极小值点,则在区间单调递减 ④若是的极值点,则. 正确的个数有( )
A.1 B.2 C.3 D.4
若椭圆的离心率是,则的值为 .
下列四个命题:
① ,”是全称命题;
② 命题“,”的否定是“,使”;
③ 若,则;
④ 若为假命题,则、均为假命题.
其中真命题的序号是( )
A.①② B.①④ C.②④ D.①②③④
若椭圆的离心率是,则的值为 .
已知线段,的中点为,动点满足(为正常数).
(1)建立适当的直角坐标系,求动点所在的曲线方程;
(2)若,动点满足,且,试求面积的最大值和最小值.
设集合A={x|-1≤x≤2},B={x|x2-(2m+1)x+2m<0}.
(1)当m<时,化简集合B;
(2)若A∪B=A,求实数m的取值范围;
(3)若RA∩B中只有一个整数,求实数m的取值范围.
“a<-2”是“函数f(x)=ax+3在区间[-1,2]上存在零点”的( )
A. 充分不必要条件 B. 必要不充分条件
C. 充分必要条件 D. 既不充分也不必要条件
函数f(x)的定义域为(0,+∞),且对一切x>0,y>0都有f=f(x)-f(y),当x>1时,有f(x)>0.
(1)求f(1)的值;
(2)判断f(x)的单调性并加以证明;
(3)若f(4)=2,求f(x)在[1,16]上的值域.