题目内容
12.已知集合$A=\left\{{x\left|{\frac{x-2}{x+1}≥0}\right.}\right\}$,集合B={y|0≤y<4},则A∩B=[2,4).分析 先求出集合A,由此利用交集的定义能求出A∩B.
解答 解:由$\frac{x-2}{x+1}$≥0,解得x≥2或x<-1,即A=(-∞,-1)∪[2,+∞),
集合B={y|0≤y<4}=[0,4),
则A∩B=[2,4),
故答案为:[2,4),
点评 本题考查交集的求法,是基础题,解题时要认真审题,注意交集性质的合理运用.
练习册系列答案
相关题目
2.已知函数$f(x)=asinxcosx-{sin^2}x+\frac{1}{2}$的一条对称轴方程为$x=\frac{π}{6}$,则函数f(x)的单调递增区间为( )
| A. | $[{kπ-\frac{π}{3},kπ+\frac{π}{6}}]$,(k∈Z) | B. | $[{kπ-\frac{π}{12},kπ+\frac{5π}{12}}]$,(k∈Z) | ||
| C. | $[{kπ-\frac{7π}{12},kπ-\frac{π}{12}}]$,(k∈Z) | D. | $[{kπ+\frac{π}{6},kπ+\frac{2π}{3}}]$,(k∈Z) |
20.某商场拟对商品进行促销,现有两种方案供选择.每种促销方案都需分两个月实施,且每种方案中第一个月与第二个月的销售相互独立.根据以往促销的统计数据,若实施方案1,顶计第一个月的销量是促销前的1.2倍和1.5倍的概率分别是0.6和0.4.第二个月销量是笫一个月的1.4倍和1.6倍的概率都是0.5;若实施方案2,预计第一个月的销量是促销前的1.4倍和1.5倍的概率分别是0.7和0.3,第二个月的销量是第一个月的1.2倍和1.6倍的概率分别是0.6和0.4.令ξi(i=1,2)表示实施方案i的第二个月的销量是促销前销量的倍数.
(Ⅰ)求ξ1,ξ2的分布列:
(Ⅱ)不管实施哪种方案,ξi与第二个月的利润之间的关系如表,试比较哪种方案第二个月的利润更大.
(Ⅰ)求ξ1,ξ2的分布列:
(Ⅱ)不管实施哪种方案,ξi与第二个月的利润之间的关系如表,试比较哪种方案第二个月的利润更大.
| 销量倍数 | ξi≤1.7 | 1.7<ξi<2.3 | ξi2.3 |
| 利润(万元) | 15 | 20 | 25 |
17.若复数$\overline{z}$满足|z+i|+|z-i|=2,则复数$\overline{z}$在平面上对应的图形是( )
| A. | 椭圆 | B. | 双曲线 | C. | 直线 | D. | 线段 |
4.已知复数z满足z(2+i)=3+2i,则|z|=( )
| A. | $\sqrt{3}$ | B. | $\sqrt{13}$ | C. | $\frac{\sqrt{65}}{5}$ | D. | $\sqrt{15}$ |
1.若a=log23,b=log3$\frac{1}{2}$,c=3-2,则下列结论正确的是( )
| A. | a<c<b | B. | c<a<b | C. | b<c<a | D. | c<b<a |