题目内容
9.已知数列{bn}满足bn=|$\frac{{a}_{n}+2}{{a}_{n}-1}$|,其中a1=2,an+1=$\frac{2}{{a}_{n}+1}$(1)求b1,b2,b3,并猜想bn的表达式(不必写出证明过程);
(2)设cn=$\frac{1}{lo{g}_{2}{b}_{n}•lo{g}_{2}{b}_{n+1}}$,数列|cn|的前项和为Sn,求证Sn<$\frac{1}{2}$.
分析 (1)由a1=2,an+1=$\frac{2}{{a}_{n}+1}$可得:a2=$\frac{2}{3}$,a3=$\frac{6}{5}$.又bn=|$\frac{{a}_{n}+2}{{a}_{n}-1}$|,可得b1,b2,b3.猜想bn=2n+1.
(2)cn=$\frac{1}{lo{g}_{2}{b}_{n}•lo{g}_{2}{b}_{n+1}}$=$\frac{1}{(n+1)(n+2)}$=$\frac{1}{n+1}$-$\frac{1}{n+2}$,即可得出数列|cn|的前项和为Sn.
解答 解:(1)由a1=2,an+1=$\frac{2}{{a}_{n}+1}$可得:a2=$\frac{2}{3}$,a3=$\frac{6}{5}$.又bn=|$\frac{{a}_{n}+2}{{a}_{n}-1}$|,
则b1=4,b2=8,b3=16.
猜想bn=4×2n-1=2n+1.
(2)证明:cn=$\frac{1}{lo{g}_{2}{b}_{n}•lo{g}_{2}{b}_{n+1}}$=$\frac{1}{(n+1)(n+2)}$=$\frac{1}{n+1}$-$\frac{1}{n+2}$,
∴数列|cn|的前项和为Sn=$(\frac{1}{2}-\frac{1}{3})$+$(\frac{1}{3}-\frac{1}{4})$+…+$(\frac{1}{n+1}-\frac{1}{n+2})$=$\frac{1}{2}-\frac{1}{n+2}$.
∴Sn<$\frac{1}{2}$.
点评 本题考查了数列递推关系、裂项求和方法,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目
20.已知函数f(x)=$\left\{\begin{array}{l}{lo{g}_{2}(1-x)+1,-1≤x<k}\\{{x}^{3}-3x+2,k≤x≤a}\end{array}\right.$,若存在k使得函数f(x)的值域为[0,2],则实数a的取值范围是( )
| A. | [$\frac{1}{2}$,$\sqrt{3}$] | B. | [1,$\sqrt{3}$] | C. | (-1,$\sqrt{3}$] | D. | (-1,$\frac{\sqrt{3}}{2}$] |
14.设[x]表示不小于实数x的最小整数,如[2.6]=3,[-3.5]=-3.已知函数f(x)=[x]2-2[x],若函数F(x)=f(x)-k(x-2)+2在(-1,4]上有2个零点,则k的取值范围是( )
| A. | $[{-\frac{5}{2},-1})∪[2,5)$ | B. | $[{-1,-\frac{2}{3}})∪[5,10)$ | C. | $({-\frac{4}{3},-1}]∪[5,10)$ | D. | $[{-\frac{4}{3},-1}]∪[5,10)$ |
18.设x>0,y>0,满足$\frac{4}{y}$+$\frac{1}{x}$=4,则x+y的最小值为( )
| A. | 4 | B. | $\frac{9}{4}$ | C. | 2 | D. | 9 |
19.已知复数z=(3a+2i)(b-i)的实部为4,其中a、b为正实数,则2a+b的最小值为( )
| A. | 2 | B. | 4 | C. | $\frac{2\sqrt{3}}{3}$ | D. | $\frac{4\sqrt{3}}{3}$ |