题目内容
14.下列三个命题:①“a2+b2=0,则a,b全为0”的逆否命题是“若a,b全不为0”,则a2+b2≠0”;
②“$m=\frac{1}{2}$”是“直线(m+2)x+3my+1=0与直线(m-2)x+(m+2)y-3=0相互垂直”的充分不必要条件;
③已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的一条渐近线经过点(1,2),则该双曲线的离心率的值为$\sqrt{5}$.
上述命题中真命题的序号为②③.
分析 ①,“a2+b2=0,则a,b全为0”的逆否命题是“若a,b不全为0”,则a2+b2≠0”;
②,当$m=\frac{1}{2}$或-2时,直线(m+2)x+3my+1=0与直线(m-2)x+(m+2)y-3=0相互垂直;
③,点(1,2)在渐进线y=$\frac{b}{a}x$上,∴$\frac{b}{a}=2,e=\sqrt{1+\frac{{b}^{2}}{{a}^{2}}}=\sqrt{5}$,
解答 解:对于①,“a2+b2=0,则a,b全为0”的逆否命题是“若a,b不全为0”,则a2+b2≠0”,故错;
对于②,当$m=\frac{1}{2}$或-2时,直线(m+2)x+3my+1=0与直线(m-2)x+(m+2)y-3=0相互垂直,故正确;
对于③,已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的一条渐近线经过点(1,2),则点(1,2)在直线y=$\frac{b}{a}x$上,∴$\frac{b}{a}=2,e=\sqrt{1+\frac{{b}^{2}}{{a}^{2}}}=\sqrt{5}$,则该双曲线的离心率的值为$\sqrt{5}$,故正确.
故答案为:②③
点评 本题考查了命题真假的判定,属于基础题.
练习册系列答案
相关题目
4.已知函数f(x)=|x-1|-1(x∈{0,1,2,3}),则其值域为( )
| A. | {0,1,2,3} | B. | {-1,0,1} | C. | {y|-1≤y≤1} | D. | {y|0≤y≤2} |
2.已知函数f(x)=a-x2(1≤x≤2)与g(x)=2x+1的图象上存在关于x轴对称的点,则实数a的取值范围是( )
| A. | [-2,-1] | B. | [-1,1] | C. | [1,3] | D. | [3,+∞] |
9.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$,F是椭圆的右焦点,A为左顶点,点P在椭圆上,PF⊥x轴,若$|{PF}|=\frac{1}{4}|{AF}|$,则椭圆的离心率为( )
| A. | $\frac{3}{4}$ | B. | $\frac{1}{2}$ | C. | $\frac{{\sqrt{3}}}{2}$ | D. | $\frac{{\sqrt{2}}}{2}$ |
19.下列有关命题的说法正确的是( )
| A. | 命题“若x2=1,则x=1”的否命题为“若x2=1,则x≠1” | |
| B. | “x=-1”是“x2-5x-6=0”的必要不充分条件 | |
| C. | 命题“$?{x_0}∈R,x_0^2+{x_0}+1<0$”的否定是“?x∈R,x2+x+1<0” | |
| D. | 命题“若x=y,则sinx=siny”的逆否命题为真命题 |