题目内容

20.已知函数$f(x)=|{x+\frac{t}{2}}|+\frac{{8-{t^2}}}{4}({x∈R})$,若函数F(x)=f[f(x)]与y=f(x)在x∈R时有相同的值域,实数t的取值范围是(-∞,-2)∪(4,+∞)..

分析 由题意可得$\frac{8-{t}^{2}}{4}$≤-$\frac{t}{2}$,从而解得.

解答 解:F(x)=f[f(x)]=|f(x)+$\frac{t}{2}$|+$\frac{8-{t}^{2}}{4}$,
$f(x)=|{x+\frac{t}{2}}|+\frac{{8-{t^2}}}{4}({x∈R})$,
∴$\frac{8-{t}^{2}}{4}$≤-$\frac{t}{2}$,
∴t≤-2或t≥4,
故答案为:(-∞,-2)∪(4,+∞).

点评 本题考查了函数的值域的求法及应用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网