题目内容

13.已知集合A={θ|cosθ<sinθ,0≤θ<2π},B={θ|tanθ<sinθ},则A∩B={θ|$\frac{π}{2}$<θ<π}.

分析 先分别同集合,B,由此能求出A∩B.

解答 解:∵集合A={θ|cosθ<sinθ,0≤θ<2π}={θ|$\frac{π}{4}<θ<\frac{5π}{4}$},
B={θ|tanθ<sinθ}={θ|$\frac{π}{2}<θ<π$或$\frac{3π}{2}$<θ<2π},
∴A∩B={θ|$\frac{π}{2}$<θ<π}.
故答案为:{θ|$\frac{π}{2}$<θ<π}.

点评 本题考查交集的求法,是基础题,解题时要认真审题,注意交集定义、三角函数性质的合理运用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网