题目内容
19.二项式(ax2-$\frac{2}{\sqrt{x}}$)n展开式的二项式系数之和为32,其中常数项为160,则a的值为2.分析 由题意可得:2n=32,解得n=5.再利用通项公式即可得出.
解答 解:由题意可得:2n=32,解得n=5.
∴$(a{x}^{2}-\frac{2}{\sqrt{x}})^{5}$的通项公式为:Tr+1=${∁}_{5}^{r}(a{x}^{2})^{5-r}(-\frac{2}{\sqrt{x}})^{r}$=a5-r(-2)r${∁}_{5}^{r}$${x}^{10-\frac{5}{2}r}$.
令10-$\frac{5}{2}r$=0,解得r=4.
∴$a(-2)^{4}•{∁}_{5}^{4}$=160,解得a=2.
故答案为:2.
点评 本题考查了二项式定理的应用,考查了推理能力与计算能力,属于基础题.
练习册系列答案
相关题目
19.已知A(x,-2),B(3,0),若直线AB的斜率为2,则x的值为( )
| A. | -1 | B. | 2 | C. | -1或2 | D. | -2 |
14.若θ∈($\frac{π}{2}$,π),且cos2θ+cos($\frac{π}{2}$+2θ)=-$\frac{1}{5}$,则tanθ=( )
| A. | -$\frac{1}{3}$ | B. | $\frac{1}{3}$ | C. | -3 | D. | 3 |
8.已知向量$\overrightarrow{a}$=(-1,6),$\overrightarrow{b}$=(3,-2),则$\overrightarrow{a}$+$\overrightarrow{b}$=( )
| A. | (4,4) | B. | (2,4) | C. | (-2,4) | D. | (-4,4) |