题目内容
数列 中,,则此数列的通项公式___________.
过点的直线交椭圆于两点, 为椭圆的左焦点,当 周长最大时,直线的方程为 .
如图,已知为原点,圆与轴相切于点,与轴正半轴相交于两点(点在点的右侧),且,椭圆过点,且焦距等于.
(1)求圆和椭圆的方程;
(2)若过点斜率不为零的直线与椭圆交于两点,求证:直线与直线的倾角互补.
从1,3,5,7这四个数中随机取出两个数组成一个两位数,则组成的两位数是5的倍数的概率是( )
A. B. C. D.
已知抛物线的标准方程为,为抛物线上一动点,为其对称轴上一点,直线与抛物线的另一个交点为.当为抛物线的焦点且直线与其对称轴垂直时,的面积为18.
(1)求抛物线的标准方程;
(2)记,若值与点位置无关,则称此时的点为“稳定点”,试求出所有“稳定点”,若没有,请说明理由.
现定义,其中为虚数单位,为自然对数的底数,,且实数指数幂的运算性质对都适用,若,,那么复数等于( )
A. B.
C. D.
已知,则( )
某学校食堂早餐只有花卷、包子、面条和蛋炒饭四种主食可供食用,有5名同学前去就餐,每人只选择其中一种,且每种主食都至少有一名同学选择.已知包子数量不足仅够一人食用,甲同学肠胃不好不会选择蛋炒饭,则这5名同学不同的主食选择方案种数为( )
A.144 B. 132 C. 96 D.48
在△ABC中,,M是BC的中点,N在线段AM上,且BN⊥AM,则向量在向量上的投影为 .