题目内容
已知数列{bn}满足b1=
,且bn+1=
bn
(1)求数列{bn}的通项公式;
(2)设an=nbn,求证:a1+a2+a3+…+an<2.
| 1 |
| 2 |
| 1 |
| 2 |
(1)求数列{bn}的通项公式;
(2)设an=nbn,求证:a1+a2+a3+…+an<2.
分析:(1)利用等比数列的概念可知{bn}是首项为
,公比为
的等比数列,从而可求数列{bn}的通项公式;
(2)由于an=nbn=n•(
)n,从而可知Sn=
+2×(
)2+3×(
)3+…+n×(
)n,利用错位相减法可求得Sn=2-(
)n-1-n(
)n,从而可证得结论.
| 1 |
| 2 |
| 1 |
| 2 |
(2)由于an=nbn=n•(
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
解答:解 (1)∵b1=
,且
=
,
∴{bn}是首项为
,公比为
的等比数列,
∴bn=(
)n.
(2)证明:记Sn=a1+a2+a3+…+an,
∵an=nbn=n•(
)n,
∴Sn=
+2×(
)2+3×(
)3+…+n×(
)n,
Sn=(
)2+2×(
)3+3×(
)4+…+(n-1)×(
)n+n×(
)n+1,
两式相减得
Sn=
+(
)2+…+(
)n-n×(
)n+1
=
-n×(
)n+1
=1-(
)n-n×(
)n+1,
整理得Sn=2-(
)n-1-n×(
)n<2.
| 1 |
| 2 |
| bn+1 |
| bn |
| 1 |
| 2 |
∴{bn}是首项为
| 1 |
| 2 |
| 1 |
| 2 |
∴bn=(
| 1 |
| 2 |
(2)证明:记Sn=a1+a2+a3+…+an,
∵an=nbn=n•(
| 1 |
| 2 |
∴Sn=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
两式相减得
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
=
| ||||
1-
|
| 1 |
| 2 |
=1-(
| 1 |
| 2 |
| 1 |
| 2 |
整理得Sn=2-(
| 1 |
| 2 |
| 1 |
| 2 |
点评:本题考查数列的求和,着重考查等比数列的通项公式及错位相减法求和,属于中档题.
练习册系列答案
相关题目