题目内容
已知数列{bn}满足b1=1,b2=5,bn+1=5bn-6bn-1(n≥2),若数列{an}满足a1=1,an=bn(
+
+…+
)(n≥2,n∈N*)
(1)求证:数列{bn+1-2bn}为等比数列,并求数列{bn}的通项公式;
(2)求证:(1+
)(1+
)…(1+
)<3.
| 1 |
| b1 |
| 1 |
| b2 |
| 1 |
| bn-1 |
(1)求证:数列{bn+1-2bn}为等比数列,并求数列{bn}的通项公式;
(2)求证:(1+
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an |
分析:(1)由{bn}满足b1=1,b2=5,bn+1=5bn-6bn-1(n≥2),知bn+1-2bn=3(bn-2bn-1),故{bn+1-2bn}成等比数列,由此能求出bn=3n-2n.
(2)由an=bn(
+
+…+
),n∈N*,推导出
=
,从而得到(1+
)(1+
)…(1+
)=(
)(
)(
)…(
)=
,n∈Z*.由此能够证明(1+
)(1+
)…(1+
)<3.
(2)由an=bn(
| 1 |
| b1 |
| 1 |
| b2 |
| 1 |
| bn-1 |
| an+1 |
| an+1 |
| bn |
| bn+1 |
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an |
| a1+1 |
| a1 |
| a2+1 |
| a2 |
| a3+1 |
| a3 |
| an+1 |
| an |
| n |
| k=1 |
| 1 |
| 3k-2k |
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an |
解答:解:(1)∵{bn}满足b1=1,b2=5,bn+1=5bn-6bn-1(n≥2),
∴bn+1-2bn=3(bn-2bn-1),故{bn+1-2bn}成等比数列,
∴bn+1-2bn=3n-1(b2-b1)=3n,
∴bn+1=2bn+3n,
∴bn+1-3n+1=2(bn-3n),
∴bn-3n=2n-1(b1-3)=-2n,
∴bn=3n-2n.
(2)an=bn(
+
+…+
),n∈N*,
∴an+1=bn•(
+
+…+
)+1=bn(
+
+…+
),
∴
=
=
,
∴(1+
)(1+
)…(1+
)=(
)(
)(
)…(
)
=
•(
)•(
)…(
)•(an+1)
=
•
•
•
…
•bn•(
+
+…+
)
=
(
+
+…+
)
=
,n∈Z*.
∵1-(
)k≥
,不等式左侧单调递增,右侧单调递减,当且仅当k=1时等式成立,
∴3k-2k≥(
)k-1,
∴
≤(
)k-1,
∴
≤
(
)k-1=
=3,
∴(1+
)(1+
)…(1+
)<3.
∴bn+1-2bn=3(bn-2bn-1),故{bn+1-2bn}成等比数列,
∴bn+1-2bn=3n-1(b2-b1)=3n,
∴bn+1=2bn+3n,
∴bn+1-3n+1=2(bn-3n),
∴bn-3n=2n-1(b1-3)=-2n,
∴bn=3n-2n.
(2)an=bn(
| 1 |
| b1 |
| 1 |
| b2 |
| 1 |
| bn-1 |
∴an+1=bn•(
| 1 |
| b1 |
| 1 |
| b2 |
| 1 |
| bn-1 |
| 1 |
| b1 |
| 1 |
| b2 |
| 1 |
| bn |
∴
| an+1 |
| an+1 |
bn•(
| ||||||||
bn+1•(
|
| bn |
| bn+1 |
∴(1+
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an |
| a1+1 |
| a1 |
| a2+1 |
| a2 |
| a3+1 |
| a3 |
| an+1 |
| an |
=
| 1 |
| a1 |
| a1+1 |
| a2 |
| a2+1 |
| a3 |
| an-1+1 |
| an |
=
| 1 |
| a1 |
| b1 |
| b2 |
| b2 |
| b3 |
| b3 |
| b4 |
| bn-1 |
| bn |
| 1 |
| b1 |
| 1 |
| b2 |
| 1 |
| bn |
=
| b1 |
| a1 |
| 1 |
| b1 |
| 1 |
| b2 |
| 1 |
| bn |
=
| n |
| k=1 |
| 1 |
| 3k-2k |
∵1-(
| 2 |
| 3 |
| 1 |
| 3•2k-1 |
∴3k-2k≥(
| 3 |
| 2 |
∴
| 1 |
| 3k-2k |
| 2 |
| 3 |
∴
| n |
| k=1 |
| 1 |
| 3k-2k |
| n |
| k=1 |
| 2 |
| 3 |
| 1 | ||
1-
|
∴(1+
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an |
点评:本题考查等比数列的证明,考查数列的通项公式的求法,考查不等式的证明.解题时要认真审题,注意构造法和等价转化思想的合理运用.
练习册系列答案
相关题目