题目内容
已知函数f(x)=
.设数列{an}满足a1=1,an+1=f(an)(n∈N+).
(1)求数列{an}的通项公式;
(2)已知数列{bn}满足b1=
,bn+1=(1+bn)2f(bn)(n∈N+),求证:对一切正整数n≥1都有
+
+…+
<2.
| x |
| 1+x |
(1)求数列{an}的通项公式;
(2)已知数列{bn}满足b1=
| 1 |
| 2 |
| 1 |
| a1+b1 |
| 1 |
| 2a2+b2 |
| 1 |
| nan+bn |
分析:(1)由f(x)=
,an+1=f(an)(n∈N+)知:an+1=
,由此能求出an=
.
(2)由bn+1=(1+bn)2•
,知bn+1=bn(bn+1),故
=
-
,由此利用裂项求法能够证明对一切正整数n≥1都有
+
+…+
<2.
| x |
| 1+x |
| an |
| an+1 |
| 1 |
| n |
(2)由bn+1=(1+bn)2•
| bn |
| 1+bn |
| 1 |
| nan+bn |
| 1 |
| bn |
| 1 |
| bn+1 |
| 1 |
| a1+b1 |
| 1 |
| 2a2+b2 |
| 1 |
| nan+bn |
解答:(1)解:∵f(x)=
,an+1=f(an)(n∈N+),
∴an+1=
,…1分
=
,…..3分
-
=1,…5分
∴{
}是以
为首项,1为公差的等差数列,
即
=1+(n-1)×1=n,
∴an=
.…6分
(2)证明:由已知得bn+1=(1+bn)2•
,
∴bn+1=bn(bn+1),显然bn∈(0,+∞),…7分
∴
=
=
=
=
=
-
,…9分
∴
+
+…+
=(
-
)+(
-
)+…+(
-
)
=
-
=2-
<2.…11分
所以,对一切正整数n≥1都有
+
+…+
<2.…12分
| x |
| 1+x |
∴an+1=
| an |
| an+1 |
| 1 |
| an+1 |
| an+1 |
| an |
| 1 |
| an+1 |
| 1 |
| an |
∴{
| 1 |
| an |
| 1 |
| a1 |
即
| 1 |
| an |
∴an=
| 1 |
| n |
(2)证明:由已知得bn+1=(1+bn)2•
| bn |
| 1+bn |
∴bn+1=bn(bn+1),显然bn∈(0,+∞),…7分
∴
| 1 |
| nan+bn |
| 1 |
| 1+bn |
| bn |
| bn+1 |
| bn2 |
| bnbn+1 |
| bn+1-bn |
| bnbn+1 |
| 1 |
| bn |
| 1 |
| bn+1 |
∴
| 1 |
| a1+b1 |
| 1 |
| 2a2+b2 |
| 1 |
| nan+bn |
=(
| 1 |
| b1 |
| 1 |
| b2 |
| 1 |
| b2 |
| 1 |
| b3 |
| 1 |
| bn |
| 1 |
| bn+1 |
=
| 1 |
| b1 |
| 1 |
| bn+1 |
=2-
| 1 |
| bn+1 |
所以,对一切正整数n≥1都有
| 1 |
| a1+b1 |
| 1 |
| 2a2+b2 |
| 1 |
| nan+bn |
点评:本题考查数列的通项公式的求法和不等式的证明,解题时要认真审题,仔细解答,注意裂项求和法的合理运用.
练习册系列答案
相关题目