题目内容

已知函数f(x)=
x
1+x
.设数列{an}满足a1=1,an+1=f(an)(n∈N+).
(1)求数列{an}的通项公式;
(2)已知数列{bn}满足b1=
1
2
bn+1=(1+bn)2f(bn)(n∈N+),求证:对一切正整数n≥1都有
1
a1+b1
+
1
2a2+b2
+…+
1
nan+bn
<2.
分析:(1)由f(x)=
x
1+x
,an+1=f(an)(n∈N+)知:an+1=
an
an+1
,由此能求出an=
1
n

(2)由bn+1=(1+bn2
bn
1+bn
,知bn+1=bn(bn+1),故
1
nan+bn
=
1
bn
-
1
bn+1
,由此利用裂项求法能够证明对一切正整数n≥1都有
1
a1+b1
+
1
2a2+b2
+…+
1
nan+bn
<2.
解答:(1)解:∵f(x)=
x
1+x
,an+1=f(an)(n∈N+),
an+1=
an
an+1
,…1分
1
an+1
=
an+1
an
,…..3分
1
an+1
-
1
an
=1,…5分
∴{
1
an
}是以
1
a1
为首项,1为公差的等差数列,
1
an
=1+(n-1)×1=n

an=
1
n
.…6分
(2)证明:由已知得bn+1=(1+bn2
bn
1+bn

∴bn+1=bn(bn+1),显然bn∈(0,+∞),…7分
1
nan+bn
=
1
1+bn
=
bn
bn+1
=
bn2 
bnbn+1
=
bn+1-bn
bnbn+1
=
1
bn
-
1
bn+1
,…9分
1
a1+b1
+
1
2a2+b2
+…+
1
nan+bn

=(
1
b1
-
1
b2
)+(
1
b2
-
1
b3
)+…+(
1
bn
-
1
bn+1

=
1
b1
-
1
bn+1

=2-
1
bn+1
<2.…11分
所以,对一切正整数n≥1都有
1
a1+b1
+
1
2a2+b2
+…+
1
nan+bn
<2.…12分
点评:本题考查数列的通项公式的求法和不等式的证明,解题时要认真审题,仔细解答,注意裂项求和法的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网