题目内容

11.△ABC的角A,B,C所对的边分别是a,b,c,若$cosA=\frac{7}{8}$,c-a=2,b=3.
(I)求a和sinB;
(II)求$sin(2A+\frac{π}{3})$.

分析 ( I)由余弦定理和正弦定理求出a、sinA、sinB的值;
(II)由二倍角与两角和的正弦公式,即可求出$sin(2A+\frac{π}{3})$的值.

解答 解:( I)△ABC中,$cosA=\frac{7}{8}$,c-a=2,b=3;
∴a2=b2+c2-2bccosA=9+(2+a)2-$\frac{21}{4}$(2+a),
即9+4a+4-$\frac{21}{4}$a-$\frac{21}{2}$=0,
解得a=2;
又∵cosA=$\frac{7}{8}$,且0<A<π,
∴sinA=$\sqrt{1{-cos}^{2}A}$=$\frac{\sqrt{15}}{8}$;
由$\frac{a}{sinA}$=$\frac{b}{sinB}$,
∴$\frac{2×8}{\sqrt{15}}$=$\frac{3}{sinB}$,
解得sinB=$\frac{3\sqrt{15}}{16}$;
(II)∵sin2A=2sinAcosA
=2×$\frac{\sqrt{15}}{8}$×$\frac{7}{8}$
=$\frac{7\sqrt{15}}{32}$,
cos2A=cos2A-sin2A
=${(\frac{7}{8})}^{2}$-${(\frac{\sqrt{15}}{8})}^{2}$
=$\frac{17}{32}$,
∴$sin(2A+\frac{π}{3})$=sin2Acos$\frac{π}{3}$+cos2Asin$\frac{π}{3}$
=$\frac{7\sqrt{15}}{32}$×$\frac{1}{2}$+$\frac{17}{32}$×$\frac{\sqrt{3}}{2}$
=$\frac{7\sqrt{15}+17\sqrt{3}}{64}$.

点评 本题考查了正弦、余弦定理以及三角恒等变换的应用问题,是基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网