题目内容
13.有以下几种说法:(l1、l2不重合)①若直线l1,l2都有斜率且斜率相等,则l1∥l2;
②若直线l1⊥l2,则它们的斜率互为负倒数;
③两条直线的倾斜角相等,则这两条直线平行;
④只有斜率相等的两条直线才一定平行.
以上说法中正确的个数是( )
| A. | 1 | B. | 2 | C. | 3 | D. | 0 |
分析 利用直线的平行于斜率截距的关系判断命题的真假即可.
解答 解:①若直线l1,l2都有斜率且斜率相等,l1∥l2;所以①正确;
②若直线l1⊥l2,则它们的斜率互为负倒数;显然必须两条直线的斜率存在的前提下是正确的;所以②不正确;
③两条直线的倾斜角相等,则这两条直线平行;正确;
④只有斜率相等的两条直线才一定平行.不正确;当两条直线的倾斜角是90°时,直线没有斜率,但是平行.
故选:B.
点评 本题考查直线的斜率与直线平行的关系,明确两条直线是指两条直线不重合的情况,考查命题的真假的判断.
练习册系列答案
相关题目
4.已知等差数列{an}的公差d≠0,Sn为其前n项和,若a2,a3,a6成等比数列,且a10=-17,则$\frac{{S}_{n}}{{2}^{n}}$的最小值是( )
| A. | $-\frac{1}{2}$ | B. | $-\frac{5}{8}$ | C. | $-\frac{3}{8}$ | D. | $-\frac{15}{32}$ |
8.已知实数x,y满足$\left\{\begin{array}{l}{y≥\frac{1}{2}x}\\{x≤7}\\{2x-y≥4}\end{array}\right.$,则z=2x-3y的最小值为( )
| A. | -32 | B. | -16 | C. | -10 | D. | -6 |
18.设$f(x)=\sqrt{3}sinωx-cosωx(ω>0)$的最小正周期为π,则f(x)的一个单调递减区间是( )
| A. | $(-\frac{π}{2},0)$ | B. | $(-\frac{π}{6},\frac{π}{3})$ | C. | $(\frac{π}{3},\frac{5π}{6})$ | D. | $(\frac{π}{2},π)$ |
3.若a+a-1=3,则a2+a-2的值为( )
| A. | 9 | B. | 7 | C. | 6 | D. | 4 |