题目内容
17.函数$f(x)=\sqrt{1-x}+lg(1-3x)$的定义域为( )| A. | (-∞,1] | B. | (0,1] | C. | $(-∞,\frac{1}{3})$ | D. | $(0,\frac{1}{3})$ |
分析 由根式内部的代数式大于等于0,对数式的真数大于0联立不等式组得答案.
解答 解:由$\left\{\begin{array}{l}{1-x≥0}\\{1-3x>0}\end{array}\right.$,解得x$<\frac{1}{3}$.
∴函数$f(x)=\sqrt{1-x}+lg(1-3x)$的定义域为(-∞,$\frac{1}{3}$).
故选:C.
点评 本题考查函数的定义域及其求法,是基础的计算题.
练习册系列答案
相关题目
7.下面四组函数中,f(x)与g(x)表示同一个函数的是( )
| A. | f(x)=|x|,$g(x)={({\sqrt{x}})^2}$ | B. | f(x)=2x,$g(x)=\frac{{2{x^2}}}{x}$ | C. | f(x)=x,$g(x)=\root{3}{x^3}$ | D. | f(x)=x,$g(x)=\frac{1}{{\sqrt{x^2}}}$ |
12.已知A,B分别为椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左、右顶点,不同两点P,Q在椭圆C上,且关于x轴对称,设直线AP,BQ的斜率分别为m,n,则当$\frac{a}{b}-\frac{1}{3mn}$取最大值时,椭圆C的离心率为( )
| A. | $\frac{{\sqrt{3}}}{3}$ | B. | $\frac{{\sqrt{2}}}{3}$ | C. | $\frac{1}{2}$ | D. | $\frac{{\sqrt{5}}}{3}$ |
2.已知lg5=m,lg7=n,则log27=( )
| A. | $\frac{m}{n}$ | B. | $\frac{n}{1-m}$ | C. | $\frac{1-n}{m}$ | D. | $\frac{1+n}{1+m}$ |