题目内容

已知m、l是直线,α、β是平面,给出下列命题:
①若l垂直于α内的两条相交直线,则l⊥α;
②若l平行于α,则l平行α内所有直线;
③若m?α,l?β,且l⊥m,则α⊥β;
④若l?β,且l⊥α,则α⊥β;
⑤若m?α,l?β,且α∥β,则m∥l.
其中不正确的命题的序号是(  )
A、①②③B、①②④
C、②③④D、②③⑤
考点:空间中直线与平面之间的位置关系
专题:空间位置关系与距离
分析:利用空间中线线、线面、面面间的位置关系求解.
解答: 解:①若l垂直于α内的两条相交直线,
则由直线与平面垂直的判定定理知l⊥α,故①正确;
②若l平行于α,则l与α内的直线平行或异面,故②错误;
③若m?α,l?β,且l⊥m,则α与β相交或平行,故③错误;
④若l?β,且l⊥α,则由平面与平面垂直的判定定理知α⊥β,故④正确;
⑤若m?α,l?β,且α∥β,则m与l平行或异面,故⑤错误.
故选:D.
点评:本题考查命题真假的判断,是基础题,解题时要注意空间思维能力的培养.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网