题目内容
函数f(x)=(2-x)|x-6|在(-∞,a]上取得最小值-4,则实数a的集合是( )
分析:由零点分段法,我们可将函数f(x)=(2-x)|x-6|的解析式化为分段函数的形式,然后根据分段函数分段处理的原则,画出函数的图象,进而结合图象数形结合,可得实数a的集合.
解答:解:∵函数f(x)=(2-x)|x-6|=
其函数图象如下图所示:

由函数图象可得:
函数f(x)=(2-x)|x-6|在(-∞,a]上取得最小值-4时,
实数a须满足
4≤a≤4+2
故实数a的集合是[4,4+2
]
故选C
|
其函数图象如下图所示:
由函数图象可得:
函数f(x)=(2-x)|x-6|在(-∞,a]上取得最小值-4时,
实数a须满足
4≤a≤4+2
| 2 |
故实数a的集合是[4,4+2
| 2 |
故选C
点评:本题考查的知识点是函数的最值及其几何意义,其中根据分段函数图象分段画的原则,画出函数的图象是解答本题的关键.
练习册系列答案
相关题目
已知函数f(x)=x3-2x2+2有唯一零点,则下列区间必存在零点的是( )
A、(-2,-
| ||
B、(-
| ||
C、(-1,-
| ||
D、(-
|