题目内容
用数学归纳法证明an+1+(a+1)2n-1能被a2+a+1整除(n∈N*).
证明:① 当n=1时,a2+(a+1)=a2+a+1可被a2+a+1整除.
② 假设n=k(k∈N*)时,ak+1+(a+1)2k-1能被a2+a+1整除,则当n=k+1时,ak+2+(a+1)2k+1=a·ak+1+(a+1)2(a+1)2k-1=a·ak+1+a·(a+1)2k-1+(a2+a+1)(a+1)2k-1=a[ak+1+(a+1)2k-1]+(a2+a+1)(a+1)2k-1,由假设可知a[ak+1+(a+1)2k-1]能被a2+a+1整除,(a2+a+1)(a+1)2k-1也能被a2+a+1整除,∴ ak+2+(a+1)2k+1能被a2+a+1整除,即n=k+1时命题也成立,
∴ 对任意n∈N*原命题成立.
练习册系列答案
相关题目