题目内容
设函数f(x)=| 9x |
| 9x+3 |
| 1 |
| 2009 |
| 2 |
| 2009 |
| 2008 |
| 2009 |
分析:根据所求式子的特点需要求出f(x)+f(1-x)的值,再通过倒序相加,把式子的值代入求出值.
解答:解:由题意得,f(x)+f(1-x)=
+
=
+
=
+
=1.
设S=f(
)+f(
)+…+f(
),
又∵S=f(
)+f(
)+…+f(
),
∴2S=[f(
)+f(
)]+…+[f(
)+f(
)]=2008×1.
∴S=1004.
故答案为:1004.
| 9x |
| 9x+3 |
| 91-x |
| 91-x+3 |
| 9x |
| 9x+3 |
| 9 |
| 9+3•9x |
| 9x |
| 9x+3 |
| 9 |
| 3(9x+3) |
设S=f(
| 1 |
| 2009 |
| 2 |
| 2009 |
| 2008 |
| 2009 |
又∵S=f(
| 2008 |
| 2009 |
| 2007 |
| 2009 |
| 1 |
| 2009 |
∴2S=[f(
| 1 |
| 2009 |
| 2008 |
| 2009 |
| 2008 |
| 2009 |
| 1 |
| 2009 |
∴S=1004.
故答案为:1004.
点评:本题是规律型的题目,即根据所求的式子特点,找出规律并且求出值,再由倒序相加法进行求值,考查了分析问题和解决问题的能力.
练习册系列答案
相关题目