题目内容

已知函数f(x)=x2+alnx,若对任意两个不等的正数x1,x2(x1>x2),都有f(x1)-f(x2)>2(x1-x2)成立,则实数a的取值范围是(  )
A、a>
1
2
B、a≥
1
2
C、a>0
D、a>2
考点:函数单调性的性质
专题:计算题,函数的性质及应用
分析:先确定g(x)=f(x)-2x=x2+alnx-2x在(0,+∞)上单增,再利用导数,可得a≥-2x2+2x恒成立,即a≥(-2x2+2x)max,即可求出实数a的取值范围.
解答: 解:∵f(x1)-f(x2)>2(x1-x2),
∴f(x1)-2x1>f(x2)-2x2
即g(x)=f(x)-2x=x2+alnx-2x在(0,+∞)上单增,
g′(x)=2x+
a
x
-2≥0
恒成立,
也就是a≥-2x2+2x恒成立,∴a≥(-2x2+2x)max
a≥
1
2

故选:B.
点评:本题考查函数单调性,考查导数知识的运用,确定g(x)=f(x)-2x=x2+alnx-2x在(0,+∞)上单增是关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网